Skip to main content
Log in

Magnetic Resonance Imaging-Based Surveillance of Hepatocellular Carcinoma: Current Status and Future Perspectives

  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aimed to introduce various magnetic resonance imaging (MRI)-based hepatocellular carcinoma (HCC) surveillance strategies in high-risk patients from technical to clinical viewpoints and provide guidance on selecting patients who would benefit from MRI-based surveillance.

Recent Findings

MRI has recently gained attention as an HCC surveillance tool due to its superior sensitivity in detecting early-stage HCC over ultrasonography (US). However, complete-sequence contrast-enhanced liver MRI has limitations of long scan time and high cost. Abbreviated MRI (AMRI) utilizes only the essential sequences for detecting HCC and has gained popularity for reduced scan time and cost while maintaining high diagnostic performance. Three AMRI protocols have been proposed, including hepatobiliary-phase, dynamic contrast-enhanced, and non-enhanced AMRI. Herein, technical details, result interpretation, performances based on previous work, ongoing trials, and current issues regarding each MRI protocol are discussed. For maximum benefits of MRI-based surveillance, a risk-stratified approach should be undertaken to select the target population, simultaneously considering cost-effectiveness. MRI-based HCC surveillance can be beneficial for populations whose US examination has inadequate quality. Evidence of cost-effectiveness of MRI-based surveillance for high-risk patients is growing.

Summary

MRI-based surveillance, particularly using AMRI, shows promise as a sensitive and cost-effective approach for early detection of HCC. Tailored approaches that take into account the patient’s HCC risk and the quality of ultrasonographic images can optimize the benefits of MRI-based surveillance. Further research is needed to assess the cost-effectiveness of MRI-based surveillance strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6.

    Article  PubMed  Google Scholar 

  2. Global Burden of Disease Liver Cancer Collaboration. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3:1683–91.

    Article  PubMed Central  Google Scholar 

  3. Rumgay H, Arnold M, Ferlay J, Lesi O, Cabasag CJ, Vignat J, et al. Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 2022;77:1598–606.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Serper M, Taddei TH, Mehta R, D’Addeo K, Dai F, Aytaman A, et al. Association of provider specialty and multidisciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology. 2017;152:1954–64.

    Article  PubMed  Google Scholar 

  5. Kim BH, Lim YS, Kim EY, Kong HJ, Won YJ, Han S, et al. Temporal improvement in survival of patients with hepatocellular carcinoma in a hepatitis B virus-endemic population. J Gastroenterol Hepatol. 2018;33:475–83.

    Article  PubMed  Google Scholar 

  6. Cadier B, Bulsei J, Nahon P, Seror O, Laurent A, Rosa I, et al. Early detection and curative treatment of hepatocellular carcinoma: a cost-effectiveness analysis in France and in the United States. Hepatology. 2017;65:1237–48.

    Article  PubMed  Google Scholar 

  7. Sherman M. Hepatocellular carcinoma: screening and staging. Clin Liver Dis. 2011;15:323–34.

    Article  PubMed  Google Scholar 

  8. Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology. 2008;47:82–9.

    Article  PubMed  Google Scholar 

  9. Nault JC, Sutter O, Nahon P, Ganne-Carrie N, Seror O. Percutaneous treatment of hepatocellular carcinoma: state of the art and innovations. J Hepatol. 2017;

  10. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the study of liver diseases. Hepatology. 2018;68:723–50.

    Article  PubMed  Google Scholar 

  11. EASL Clinical Practice Guidelines. Management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  12. KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. Clin Mol Hepatol. 2022;28:583–705.

  13. Kim SY, An J, Lim YS, Han S, Lee JY, Byun JH, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017;3:456–63. Findings from this prospective study suggest that complete gadoxetic acid-enhanced MRI outperforms US for HCC surveillance in high-risk patients

    Article  PubMed  PubMed Central  Google Scholar 

  14. van Meer S, de Man RA, Coenraad MJ, Sprengers D, van Nieuwkerk KM, Klumpen HJ, et al. Surveillance for hepatocellular carcinoma is associated with increased survival: results from a large cohort in the Netherlands. J Hepatol. 2015;63:1156–63.

    Article  PubMed  Google Scholar 

  15. Tzartzeva K, Obi J, Rich NE, Parikh ND, Marrero JA, Yopp A, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018;154:1706–18 e1.

    Article  CAS  PubMed  Google Scholar 

  16. Yoon JH, Lee JM, Lee DH, Joo I, Jeon JH, Ahn SJ, et al. A comparison of biannual two-phase low-dose liver CT and US for HCC surveillance in a group at high risk of HCC development. Liver Cancer. 2020;9:503–17.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Son JH, Choi SH, Kim SY, Jang HY, Byun JH, Won HJ, et al. Validation of US liver imaging reporting and data system version 2017 in patients at high risk for hepatocellular carcinoma. Radiology. 2019;292:390–7.

    Article  PubMed  Google Scholar 

  18. Simmons O, Fetzer DT, Yokoo T, Marrero JA, Yopp A, Kono Y, et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Aliment Pharmacol Ther. 2017;45:169–77.

    Article  CAS  PubMed  Google Scholar 

  19. Esfeh JM, Hajifathalian K, Ansari-Gilani K. Sensitivity of ultrasound in detecting hepatocellular carcinoma in obese patients compared to explant pathology as the gold standard. Clin Mol Hepatol. 2020;26:54–9.

    Article  PubMed  Google Scholar 

  20. Huang DQ, Fowler KJ, Liau J, Cunha GM, Louie AL, An JY, et al. Comparative efficacy of an optimal exam between ultrasound versus abbreviated MRI for HCC screening in NAFLD cirrhosis: a prospective study. Aliment Pharmacol Ther. 2022;55:820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang JD, Mannalithara A, Piscitello AJ, Kisiel JB, Gores GJ, Roberts LR, et al. Impact of surveillance for hepatocellular carcinoma on survival in patients with compensated cirrhosis. Hepatology. 2018;68:78–88.

    Article  PubMed  Google Scholar 

  22. Arguedas MR, Chen VK, Eloubeidi MA, Fallon MB. Screening for hepatocellular carcinoma in patients with hepatitis C cirrhosis: a cost-utility analysis. Am J Gastroenterol. 2003;98:679–90.

    Article  PubMed  Google Scholar 

  23. Goossens N, Singal AG, King LY, Andersson KL, Fuchs BC, Besa C, et al. Cost-effectiveness of risk score-stratified hepatocellular carcinoma screening in patients with cirrhosis. Clin Transl Gastroenterol. 2017;8:e101.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim HL, An J, Park JA, Park SH, Lim YS, Lee EK. Magnetic resonance imaging is cost-effective for hepatocellular carcinoma surveillance in high-risk patients with cirrhosis. Hepatology. 2019;69:1599–613. Findings from this study suggest that implementing risk-stratified MRI-based HCC surveillance for high-risk patients is not only superior to the currently recommended US-based surveillance but also cost-effective

    Article  PubMed  Google Scholar 

  25. Ahn SS, Kim MJ, Lim JS, Hong HS, Chung YE, Choi JY. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology. 2010;255:459–66.

    Article  PubMed  Google Scholar 

  26. Ueno A, Masugi Y, Yamazaki K, Komuta M, Effendi K, Tanami Y, et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol. 2014;61:1080–7.

    Article  CAS  PubMed  Google Scholar 

  27. Demirtas CO, Gunduz F, Tuney D, Baltacioglu F, Kani HT, Bugdayci O, et al. Annual contrast-enhanced magnetic resonance imaging is highly effective in the surveillance of hepatocellular carcinoma among cirrhotic patients. Eur J Gastroenterol Hepatol. 2020;32:517–23.

    Article  CAS  PubMed  Google Scholar 

  28. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–93.

    Article  PubMed  Google Scholar 

  29. Kim YK, Lee WJ, Park MJ, Kim SH, Rhim H, Choi D. Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology. 2012;265:104–14.

    Article  PubMed  Google Scholar 

  30. Piana G, Trinquart L, Meskine N, Barrau V, Beers BV, Vilgrain V. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol. 2011;55:126–32.

    Article  PubMed  Google Scholar 

  31. Vandecaveye V, De Keyzer F, Verslype C, Op de Beeck K, Komuta M, Topal B, et al. Diffusion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol. 2009;19:2456–66.

    Article  PubMed  Google Scholar 

  32. Kim HJ, Lee SS, Byun JH, Kim JC, Yu CS, Park SH, et al. Incremental value of liver MR imaging in patients with potentially curable colorectal hepatic metastasis detected at CT: a prospective comparison of diffusion-weighted imaging, gadoxetic acid–enhanced MR imaging, and a combination of both MR techniques. Radiology. 2015;274:712–22.

    Article  PubMed  Google Scholar 

  33. Brunsing RL, Chen DH, Schlein A, Wolfson T, Gamst A, Mamidipalli A, et al. Gadoxetate-enhanced abbreviated MRI for hepatocellular carcinoma surveillance: preliminary experience. Radiol Imaging Cancer. 2019;1:e190010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vietti Violi N, Lewis S, Liao J, Hulkower M, Hernandez-Meza G, Smith K, et al. Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening. Eur Radiol. 2020;30:6003–13.

    Article  CAS  PubMed  Google Scholar 

  35. An JY, Pena MA, Cunha GM, Booker MT, Taouli B, Yokoo T, et al. Abbreviated MRI for hepatocellular carcinoma screening and surveillance. Radiographics. 2020;40:1916–31.

    Article  PubMed  Google Scholar 

  36. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254:47–66.

    Article  PubMed  Google Scholar 

  37. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med. 2016;75:63–81.

    Article  PubMed  Google Scholar 

  38. Taron J, Martirosian P, Erb M, Kuestner T, Schwenzer NF, Schmidt H, et al. Simultaneous multislice diffusion-weighted MRI of the liver: analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging. 2016;44:865–79.

    Article  PubMed  Google Scholar 

  39. Obele CC, Glielmi C, Ream J, Doshi A, Campbell N, Zhang HC, et al. Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging. 2015;40:2323–30.

    Article  PubMed  Google Scholar 

  40. Kim JY, Lee SS, Byun JH, Kim SY, Park SH, Shin YM, et al. Biologic factors affecting HCC conspicuity in hepatobiliary phase imaging with liver-specific contrast agents. AJR Am J Roentgenol. 2013;201:322–31.

    Article  PubMed  Google Scholar 

  41. Kim SY, Wu EH, Park SH, Wang ZJ, Hope TA, Yee J, et al. Comparison of hepatocellular carcinoma conspicuity on hepatobiliary phase images with gadoxetate disodium vs. delayed phase images with extracellular cellular contrast agent. Abdom Radiol (NY). 2016;41:1522–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park HJ, Seo N, Kim SY. Current landscape and future perspectives of abbreviated MRI for hepatocellular carcinoma surveillance. Korean J Radiol. 2022;23:598–614.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marks RM, Ryan A, Heba ER, Tang A, Wolfson TJ, Gamst AC, et al. Diagnostic per-patient accuracy of an abbreviated hepatobiliary phase gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance. AJR Am J Roentgenol. 2015;204:527–35.

    Article  PubMed  Google Scholar 

  44. Tillman BG, Gorman JD, Hru JM, Lee MH, King MC, Sirlin CB, et al. Diagnostic per-lesion performance of a simulated gadoxetate disodium-enhanced abbreviated MRI protocol for hepatocellular carcinoma screening. Clin Radiol. 2018;73:485–93.

    Article  CAS  PubMed  Google Scholar 

  45. Park HJ, Kim SY, Singal AG, Lee SJ, Won HJ, Byun JH, et al. Abbreviated magnetic resonance imaging vs ultrasound for surveillance of hepatocellular carcinoma in high-risk patients. Liver Int. 2021;42:2080–92. This study demonstrates the potential of abbreviated MRI-based approach for HCC surveillance in high-risk patients, as it exhibits higher sensitivity compared to ultrasound

    Article  PubMed  Google Scholar 

  46. Park HJ, Jang HY, Kim SY, Lee SJ, Won HJ, Byun JH, et al. Non-enhanced magnetic resonance imaging as a surveillance tool for hepatocellular carcinoma: comparison with ultrasound. J Hepatol. 2020;72:718–24.

    Article  PubMed  Google Scholar 

  47. Ahmed NNA, El Gaafary SM, Elia RZ, Abdulhafiz EM. Role of abbreviated MRI protocol for screening of HCC in HCV related cirrhotic patients prior to direct-acting antiviral treatment. Egypt J Radiol Nucl Med. 2020;51:102.

    Article  Google Scholar 

  48. Sutherland T, Watts J, Ryan M, Galvin A, Temple F, Vuong J, et al. Diffusion-weighted MRI for hepatocellular carcinoma screening in chronic liver disease: direct comparison with ultrasound screening. J Med Imaging Radiat Oncol. 2017;61:34–9.

    Article  PubMed  Google Scholar 

  49. Choi MH, Choi JI, Yoon JH, et al. Annual non-contrast liver MRI versus biannual liver ultrasonography for surveillance of HCC in patients with liver cirrhosis (MAGNUS-HCC): results of a prospective, multicenter trial (abstract). In: Proceedings of the 76th Annual Meeting of the Korean Congress of Radiology and Annual Delegate Meeting of The Korean Society of Radiology; September 17-19, 2020.

  50. Gupta P, Soundararajan R, Patel A, Kumar MP, Sharma V, Kalra N. Abbreviated MRI for hepatocellular carcinoma screening: a systematic review and meta-analysis. J Hepatol. 2021;75:108–19.

    Article  PubMed  Google Scholar 

  51. Besa C, Lewis S, Pandharipande PV, Chhatwal J, Kamath A, Cooper N, et al. Hepatocellular carcinoma detection: diagnostic performance of a simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid. Abdom Radiol (NY). 2017;42:179–90.

    Article  PubMed  Google Scholar 

  52. Whang S, Choi MH, Choi JI, Youn SY, Kim DH, Rha SE. Comparison of diagnostic performance of non-contrast MRI and abbreviated MRI using gadoxetic acid in initially diagnosed hepatocellular carcinoma patients: a simulation study of surveillance for hepatocellular carcinomas. Eur Radiol. 2020;30:4150–63.

    Article  CAS  PubMed  Google Scholar 

  53. Joo I, Kim SY, Kang TW, Kim YK, Park BJ, Lee YJ, et al. Radiologic-pathologic correlation of hepatobiliary phase hypointense nodules without arterial phase hyperenhancement at gadoxetic acid–enhanced MRI: a multicenter study. Radiology. 2020;296:335–45.

    Article  PubMed  Google Scholar 

  54. Joo I, Lee JM, Lee DH, Jeon JH, Han JK, Choi BI. Noninvasive diagnosis of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout? Eur Radiol. 2015;25:2859–68.

    Article  PubMed  Google Scholar 

  55. Kim TK, Lee E, Jang HJ. Imaging findings of mimickers of hepatocellular carcinoma. Clin Mol Hepatol. 2015;21:326–43.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Petrasek J, Singal AG, Rich NE. Harms of hepatocellular carcinoma surveillance. Curr Hepatol Rep. 2019;18:383–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Park SH, Kim B, Kim SY, Shim YS, Kim JH, Huh J, et al. Abbreviated MRI with optional multiphasic CT as an alternative to full-sequence MRI: LI-RADS validation in a HCC-screening cohort. Eur Radiol. 2020;30:2302–11.

    Article  PubMed  Google Scholar 

  58. Brismar TB, Dahlstrom N, Edsborg N, Persson A, Smedby O, Albiin N. Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers. Acta Radiol. 2009;50:709–15.

    Article  CAS  PubMed  Google Scholar 

  59. Tamada T, Ito K, Sone T, Yamamoto A, Yoshida K, Kakuba K, et al. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging. 2009;29:636–40.

    Article  PubMed  Google Scholar 

  60. Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, Kaza RK, Liu PS, et al. Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology. 2013;266:452–61.

    Article  PubMed  Google Scholar 

  61. Kim DW, Choi SH, Park T, Kim SY, Lee SS, Byun JH. Transient severe motion artifact on arterial phase in gadoxetic acid–enhanced liver magnetic resonance imaging: a systematic review and meta-analysis. Invest Radiol. 2021;

  62. Huh J, Kim SY, Yeh BM, Lee SS, Kim KW, Wu EH, et al. Troubleshooting arterial-phase MR images of gadoxetate disodium-enhanced liver. Korean J Radiol. 2015;16:1207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29:365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Levine D, McDonald RJ, Kressel HY. Gadolinium retention after contrast-enhanced MRI. JAMA. 2018;320:1853–4.

    Article  PubMed  Google Scholar 

  65. Lee JY, Huo EJ, Weinstein S, Santos C, Monto A, Corvera CU, et al. Evaluation of an abbreviated screening MRI protocol for patients at risk for hepatocellular carcinoma. Abdom Radiol (NY). 2018;43:1627–33.

    Article  PubMed  PubMed Central  Google Scholar 

  66. American College of Radiology. CT/MRI LI-RADS version 2018. https://www.acr.org/-/media/ACR/Files/RADS/LI-RADS/LI-RADS-2018-Core.pdf?la=en. Accessed 7 April, 2023

  67. Khatri G, Pedrosa I, Ananthakrishnan L, de Leon AD, Fetzer DT, Leyendecker J, et al. Abbreviated-protocol screening MRI vs. complete-protocol diagnostic MRI for detection of hepatocellular carcinoma in patients with cirrhosis: an equivalence study using LI-RADS v2018. J Magn Reson Imaging. 2020;51:415–25.

    Article  PubMed  Google Scholar 

  68. Yang JD. Detect or not to detect very early stage hepatocellular carcinoma? The western perspective. Clin Mol Hepatol. 2019;25:335–43.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chernyak V, Fowler KJ, Kamaya A, Kielar AZ, Elsayes KM, Bashir MR, et al. Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology. 2018;289:816–30.

    Article  PubMed  Google Scholar 

  70. Park SH, Kim B, Kim SY, Choi SJ, Huh J, Kim HJ, et al. Characterizing computed tomography-detected arterial hyperenhancing-only lesions in patients at risk of hepatocellular carcinoma: can non-contrast magnetic resonance imaging be used for sequential imaging? Korean J Radiol. 2020;21:280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis. 2003;23:47–58.

    Article  PubMed  Google Scholar 

  72. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  73. Wong LL, Reyes RJ, Kwee SA, Hernandez BY, Kalathil SC, Tsai NC. Pitfalls in surveillance for hepatocellular carcinoma: how successful is it in the real world? Clin Mol Hepatol. 2017;23:239–48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.J.P., as the first author, wrote the main manuscript text and prepared tables and figures. S.Y.K. and Y.S.L., as co-corresponding authors, reviewed and revised the manuscript.

Corresponding authors

Correspondence to So Yeon Kim or Young-Suk Lim.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

Y.S.L. received grant from Gilead Sciences, has been a consultant for AbbVie, Assembly Biosciences, GlaxoSmithKline, Gilead Sciences, Janssen, Olix Pharmaceuticals, Roche, Vaccitech, and Vir Biotechnology, and received speaker fees from AbbVie, Gilead Sciences, and Vaccitech. The remaining authors have no financial disclosures.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H.J., Kim, S.Y. & Lim, YS. Magnetic Resonance Imaging-Based Surveillance of Hepatocellular Carcinoma: Current Status and Future Perspectives. Curr Hepatology Rep 22, 83–94 (2023). https://doi.org/10.1007/s11901-023-00611-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-023-00611-w

Keywords

Navigation