Skip to main content

Advertisement

Log in

Determining Energy Requirements in Cirrhosis: an Update on the Role of Indirect Calorimetry

  • Nutrition in Patients with Chronic Liver Disease (A Montano-Loza, Section Editor)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Malnutrition in cirrhosis is associated with significant morbidity and mortality, and an accurate energy prescription is central to effective nutrition therapy. Indirect calorimetry is recommended to determine energy requirements, with novel handheld devices offering a simpler and lower cost assessment. This review summarises the published literature from 2010 to 2020 regarding the measurement of energy expenditure in patients with liver cirrhosis.

Recent Findings

Twelve studies involving 1039 patients were identified. Results indicate discordance between predicted and measured requirements in cirrhosis, with both underestimation (58%, n = 7) and overestimation (36%, n = 4) reported. The prevalence of hypermetabolism ranged from 5.3 to 58.3%. Heterogeneity in patient cohort, liver disease severity, and nutritional status impact observed results. In three studies involving handheld calorimetry devices, moderate agreement with metabolic carts was reported, with superior results to predictive equations when determining resting metabolic rate.

Summary

Predictive equations are inaccurate in cirrhosis, and indirect calorimetry should be used to guide nutrition interventions. Handheld devices are a promising tool to embed in clinical practice with further studies required to validate their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Carey EJ, Lai JC, Sonnenday C, Tapper EB, Tandon P, Duarte-Rojo A, et al. A North American expert opinion statement on sarcopenia in liver transplantation. Hepatology. 2019;70(5):1816–29. https://doi.org/10.1002/hep.30828.

    Article  PubMed  Google Scholar 

  2. Dasarathy SMM. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–44.

    Article  Google Scholar 

  3. Maharshi S, Sharma BC, Srivastava S. Malnutrition in cirrhosis increases morbidity and mortality. J Gastroenterol Hepatol. 2015;30(10):1507–13.

    Article  CAS  Google Scholar 

  4. D'Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44:217–31.

    Article  Google Scholar 

  5. Harrison J, McKiernan J, Neuberger JM. A prospective study on the effect of recipient nutritional status on outcome in liver transplantation. Transpl Int. 1997;10(5):369–74. https://doi.org/10.1007/s001470050072.

    Article  CAS  PubMed  Google Scholar 

  6. Lucidi CLB, Di Gregorio V, Incicco S, D'Ambrosio D, Venditti M, Riggio O, et al. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int. 2018;38:38(5)–857. https://doi.org/10.1111/liv.13691.

    Article  Google Scholar 

  7. Sinclair M, Chapman B, Hoermann R, Angus PW, Testro A, Scodellaro T, et al. Handgrip strength adds more prognostic value to the model for end-stage liver disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transpl. 2019;25(10):1480–7. https://doi.org/10.1002/lt.25598.

    Article  PubMed  Google Scholar 

  8. Ebadi M, Tandon P, Moctezuma-Velazquez C, Ghosh S, Baracos VE, Mazurak VC, et al. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J Hepatol. 2018;69(3):608–16. https://doi.org/10.1016/j.jhep.2018.04.015.

    Article  PubMed  Google Scholar 

  9. Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schutz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38(2):485–521. https://doi.org/10.1016/j.clnu.2018.12.022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tsiaousi ET, Hatzitolios AI, Trygonis SK, Savopoulos CG. Malnutrition in end stage liver disease: recommendations and nutritional support. J Gastroenterol Hepatol. 2008;23(4):527–33. https://doi.org/10.1111/j.1440-1746.2008.05369.x.

    Article  PubMed  Google Scholar 

  11. EASL. Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93. https://doi.org/10.1016/j.jhep.2018.06.024.

    Article  Google Scholar 

  12. Le Cornu KA, McKierman FJ, Kaadia SA, Neuberger JM. A prospective randomised study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation. 2000;69(7):1364–9.

    Article  Google Scholar 

  13. Campillo B, Bories PN, Pornin B, Devanlay M. Influence of liver failure, ascites, and energy expenditure on the response to oral nutrition in alcoholic liver cirrhosis. Nutrition. 1997;13(7-8):613–21. https://doi.org/10.1016/s0899-9007(97)83001-8.

    Article  CAS  PubMed  Google Scholar 

  14. Manguso F, D'Ambra G, Menchise A, Sollazzo R, D’Agostino L. Effects of an appropriate oral diet on the nutritional status of patients with HCV-related liver cirrhosis: a prospective study. Clin Nutr. 2005;24(5):751–9. https://doi.org/10.1016/j.clnu.2005.02.010.

    Article  CAS  PubMed  Google Scholar 

  15. Plank LD, Gane EJ, Peng S, Muthu C, Mathur S, Gillanders L, et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48(2):557–66. https://doi.org/10.1002/hep.22367.

    Article  PubMed  Google Scholar 

  16. Swart GR, Zillikens MC, van Vuure JK, van den Berg JW. Effect of a late evening meal on nitrogen balance in patients with cirrhosis of the liver. BMJ. 1989;299(6709):1202–3. https://doi.org/10.1136/bmj.299.6709.1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kearns PJ, Young H, Garcia G, Blaschke T, O'Hanlon G, Rinki M, et al. Accelerated improvement of alcoholic liver disease with enteral nutrition. Gastroenterology. 1992;102(1):200–5. https://doi.org/10.1016/0016-5085(92)91801-a.

    Article  CAS  PubMed  Google Scholar 

  18. Cabre E, Gonzalez-Huix F, Abad-Lacruz A, Esteve M, Acero D, Fernandez-Banares F, et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology. 1990;98(3):715–20. https://doi.org/10.1016/0016-5085(90)90293-a.

    Article  CAS  PubMed  Google Scholar 

  19. Ney M, Vandermeer B, van Zanten SJV, Ma MM, Gramlich L, Tandon P. Meta-analysis: oral or enteral nutrition supplementation in cirrhosis. Aliment Pharmacol Ther. 2013;37:672–279.

    Article  CAS  Google Scholar 

  20. Koretz RL, Avenell A, Lipman TO. Nutritional support for liver disease. Cochrane Database Syst Rev. 2012;5(5):CD008344. https://doi.org/10.1002/14651858.CD008344.pub2.

    Article  Google Scholar 

  21. Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int. 2015;35(9):2072–8. https://doi.org/10.1111/liv.12798.

    Article  PubMed  Google Scholar 

  22. Reeves MM, Capra S. Predicting energy requirements in the clinical setting: are current methods evidence based? Nutr Rev. 2003;61:143–51.

    Article  Google Scholar 

  23. Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect calorimetry in clinical practice. J Clin Med. 2019;8(9):1387. https://doi.org/10.3390/jcm8091387.

    Article  CAS  PubMed Central  Google Scholar 

  24. Weekes CE. Controversies in the determination of energy requirements. Proc Nutr Soc. 2007;66:367–77.

    Article  Google Scholar 

  25. Hipskind P, Glass C, Charlton D, Nowak D, Dasarathy S. Do handheld calorimeters have a role in assessment of nutrition needs in hospitalized patients? A systematic review of literature. Nutr Clin Pract. 2011;26(4):426–33.

    Article  Google Scholar 

  26. Westerterp KR. Diet induced thermogenesis. Nutr Metab (Lond). 2004;1(1):5. https://doi.org/10.1186/1743-7075-1-5.

    Article  CAS  Google Scholar 

  27. Westerterp KR. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol. 2013;4:90. https://doi.org/10.3389/fphys.2013.00090.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oshima T, Berger MM, De Waele E, Guttormsen AB, Heidegger CP, Hiesmayr M, et al. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin Nutr. 2017;36(3):651–62. https://doi.org/10.1016/j.clnu.2016.06.010.

    Article  PubMed  Google Scholar 

  29. Reid CL. Poor agreement between continuous measurements of energy expenditure and routinely used prediction equations in intensive care unit patients. Clin Nutr Edinb Scotl. 2007;26:649–57.

    Article  Google Scholar 

  30. Singer P, Singer J. Clinical guide for the use of metabolic carts: indirect calorimetry: no longer the orphan of energy estimation. Nutr Clin Pract. 2016;31(1):30–8.

    Article  CAS  Google Scholar 

  31. Eslamparast T, Vandermeer B, Raman M, Gramlich L, Den Heyer V, Belland D, et al. Are predictive energy expenditure equations accurate in cirrhosis? Nutrients. 2019;11(2):334. https://doi.org/10.3390/nu11020334.

    Article  CAS  PubMed Central  Google Scholar 

  32. Harris JA, Benedict FG. A biometric study of basal metabolism in man. Washington, DC: Carnegie Institute; 1919.

    Google Scholar 

  33. University FaAOWHOUN. Energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. WHO Technical Report Series. 1985:724.

  34. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241–7. https://doi.org/10.1093/ajcn/51.2.241.

    Article  CAS  PubMed  Google Scholar 

  35. Owen OE, Kavle E, Owen RS, Polansky M, Caprio S, Mozzoli MA, et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr. 1986;44(1):1–19. https://doi.org/10.1093/ajcn/44.1.1.

    Article  CAS  PubMed  Google Scholar 

  36. Owen OE, Holup JL, D'Alessio DA, Craig ES, Polansky M, Smalley KJ, et al. A reappraisal of the caloric requirements of men. Am J Clin Nutr. 1987;46(6):875–85. https://doi.org/10.1093/ajcn/46.6.875.

    Article  CAS  PubMed  Google Scholar 

  37. Cunningham JJ. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am J Clin Nutr. 1980;33(11):2372–4. https://doi.org/10.1093/ajcn/33.11.2372.

    Article  CAS  PubMed  Google Scholar 

  38. Muller MJ, Bottcher J, Selberg O. Energy expenditure and substrate metabolism in liver cirrhosis. Int J Obes Relat Metab Disord. 1993;17(Suppl 3):S102–6.

    PubMed  Google Scholar 

  39. Dolz C, Raurich JM, Ibanez J, Obrador A, Marse P, Gaya J. Ascites increases the resting energy expenditure in liver cirrhosis. Gastroenterology. 1991;100(3):738–44. https://doi.org/10.1016/0016-5085(91)80019-6.

    Article  CAS  PubMed  Google Scholar 

  40. Knudsen AW, Krag A, Nordgaard-Lassen I, Frandsen E, Tofteng F, Mortensen C, et al. Effect of paracentesis on metabolic activity in patients with advanced cirrhosis and ascites. Scand J Gastroenterol. 2016;51(5):601–9. https://doi.org/10.3109/00365521.2015.1124282.

    Article  CAS  PubMed  Google Scholar 

  41. Peng S, Plank LD, McCall JL, Gillanders LK, McIlroy K, Gane EJ. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr. 2007;85(5):1257–66. https://doi.org/10.1093/ajcn/85.5.1257.

    Article  CAS  PubMed  Google Scholar 

  42. Schock L, Lam L, Tandon P, Taylor L, Raman M. Indirect calorimetry performance using a handheld device compared to the metabolic cart in outpatients with cirrhosis. Nutrients. 2019;11(5):1030. https://doi.org/10.3390/nu11051030.

    Article  CAS  PubMed Central  Google Scholar 

  43. Glass C, Hipskind P, Cole D, Lopez R, Dasarathy S. Handheld calorimeter is a valid instrument to quantify resting energy expenditure in hospitalized cirrhotic patients: a prospective study. Nutr Clin Pract. 2012;27:677–88.

    Article  Google Scholar 

  44. Terakura Y, Shiraki M, Nishimura K, Iwasa J, Nagaki M, Moriwaki H. Indirect calorimetry and anthropometry to estimate energy metabolism in patients with liver cirrhosis. J Nutr Sci Vitaminol (Tokyo). 2010;56(6):372–9. https://doi.org/10.3177/jnsv.56.372.

    Article  CAS  Google Scholar 

  45. Merli M, Riggio O, Romiti A, Ariosto F, Mango L, Pinto G, et al. Basal energy production rate and substrate use in stable cirrhotic patients. Hepatology. 1990;12(1):106–12. https://doi.org/10.1002/hep.1840120117.

    Article  CAS  PubMed  Google Scholar 

  46. Campillo B, Richardnet JP, Scherman E, Bories PN. Evaluation of nutritional practice in hospitalized cirrhotic patients: results of a prospective study. Nutrition. 2003;19(6):515–21.

    Article  Google Scholar 

  47. Prieto-Frias C, Conchillo M, Payeras M, Inarrairaegui M, Davola D, Fruhbeck G, et al. Factors related to increased resting energy expenditure in men with liver cirrhosis. Eur J Gastroenterol Hepatol. 2016;28(2):139–45. https://doi.org/10.1097/MEG.0000000000000516.

    Article  PubMed  Google Scholar 

  48. Meng QH, Hou W, Yu HW, Lu J, Li J, Wang JH, et al. Resting energy expenditure and substrate metabolism in patients with acute-on-chronic hepatitis B liver failure. J Clin Gastroenterol. 2011;45(5):456–61. https://doi.org/10.1097/MCG.0b013e31820f7f02.

    Article  PubMed  Google Scholar 

  49. Shiraki M, Terakura Y, Iwasa J, Shimizu M, Miwa Y, Murakami N, et al. Elevated serum tumor necrosis factor-alpha and soluble tumor necrosis factor receptors correlate with aberrant energy metabolism in liver cirrhosis. Nutrition. 2010;26(3):269–75. https://doi.org/10.1016/j.nut.2009.04.016.

    Article  CAS  PubMed  Google Scholar 

  50. Schutz T, Hudjetz H, Roske AE, Katzorke C, Kreymann G, Budde K, et al. Weight gain in long-term survivors of kidney or liver transplantation—another paradigm of sarcopenic obesity? Nutrition. 2012;28(4):378–83. https://doi.org/10.1016/j.nut.2011.07.019.

    Article  PubMed  Google Scholar 

  51. Miyake R, Tanaka S, Ohkawara K, Ishikawa-Takata K, Hikihara Y, Taguri E, et al. Validity of predictive equations for basal metabolic rate in Japanese adults. J Nutr Sci Vitaminol (Tokyo). 2011;57(3):224–32. https://doi.org/10.3177/jnsv.57.224.

    Article  CAS  Google Scholar 

  52. Mathur S, Peng S, Gane EJ, McCall JL, Plank LD. Hypermetabolism predicts reduced transplant-free survival independent of MELD and Child-Pugh scores in liver cirrhosis. Nutrition. 2007;23(5):398–403. https://doi.org/10.1016/j.nut.2007.02.003.

    Article  CAS  PubMed  Google Scholar 

  53. Ferreira LG, Santos LF, Silva TR, Anastacio LR, Lima AS, Correia MI. Hyper- and hypometabolism are not related to nutritional status of patients on the waiting list for liver transplantation. Clin Nutr. 2014;33(5):754–60. https://doi.org/10.1016/j.clnu.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  54. Teramoto A, Yamanaka-Okumura H, Urano E, Nakamura-Kutsuzawa T, Sugihara K, Katayama T, et al. Comparison of measured and predicted energy expenditure in patients with liver cirrhosis. Asia Pac J Clin Nutr. 2014;23(2):197–204. https://doi.org/10.6133/apjcn.2014.23.2.12.

    Article  CAS  PubMed  Google Scholar 

  55. Messina C, Maffi G, Vitale J, Ulivieri F, Guglielmi G, Sconfienza L. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg. 2018;8:86–99.

    Article  Google Scholar 

  56. Kato M, Miwa Y, Tajika M, Hiraoka T, Muto Y, Moriwaki H. Preferential use of branched-chain amino acids as an energy substrate in patients with liver cirrhosis. Intern Med. 1998;37:429–34.

    Article  CAS  Google Scholar 

  57. Belarmino G, Singer P, Gonzalez MC, Machado NM, Cardinelli CS, Barcelos S, et al. Prognostic value of energy expenditure and respiratory quotient measuring in patients with liver cirrhosis. Clin Nutr. 2019;38:1899–904.

    Article  CAS  Google Scholar 

  58. Lee SJ, Lee HJ, Jung YJ, Han M, Lee SG, Hong SK. Comparison of measured energy expenditure using indirect calorimetry vs predictive equations for liver transplant recipients. JPEN J Parenter Enteral Nutr. 2020;45:761–7. https://doi.org/10.1002/jpen.1932.

    Article  PubMed  Google Scholar 

  59. Case KO, Brahler CJ, Heiss C. Resting energy expenditures in Asian women measured by indirect calorimetry are lower than expenditures calculated from prediction equations. J Am Diet Assoc. 1997;97(11):1288–92. https://doi.org/10.1016/s0002-8223(97)00308-8.

    Article  CAS  PubMed  Google Scholar 

  60. Bot D, Droop A, Tushuizen ME, Van Hoek B. For dietary advice in end-stage liver cirrhosis resting metabolic rate should be measured, not estimated. Hepatoma Research. 2020;45. https://doi.org/10.20517/2394-5079.2020.62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke Chapman.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Brooke Chapman, Adam Testro, Paul Gow, Bethany Whitcher, and Maria Sinclair declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, B., Testro, A., Gow, P. et al. Determining Energy Requirements in Cirrhosis: an Update on the Role of Indirect Calorimetry. Curr Hepatology Rep 20, 85–95 (2021). https://doi.org/10.1007/s11901-021-00564-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-021-00564-y

Keywords

Navigation