Skip to main content

Advertisement

Log in

The Role of Hepatic and Splanchnic Lymphatic System in Portal Hypertension and Ascites

  • Portal Hypertension (J Gonzalez-Abraldes and E Tsochatzis, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The lymphatic network plays a major role in maintaining tissue fluid homeostasis. Therefore, several pathological conditions associated with edema formation result in deficient lymphatic function. However, traditionally, the lymphatic system has been underestimated until recent years when it has been noticed the importance of this system in chronic liver disease. This review highlights the knowledge of lymphatic biology in the context of portal hypertension and liver cirrhosis.

Recent Findings

Among different roles of lymphatic system in liver disease, two remarkable ones are the contribution in ascites accumulation and the hepatic lymphangiogenesis in portal hypertension which is regulated by sympathetic nerves.

Summary

The identification of novel pathological mechanisms has focused efforts into correction of structural changes and function affecting lymphatic vessels in liver disease. Despite the knowledge gained, we still have to face many unresolved questions concerning the role played by the lymphatic system in chronic liver disease and the design of therapeutic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jurisic G, Detmar M. Lymphatic endothelium in health and disease. Cell Tissue Res. 2009;335:97–108.

    Article  CAS  PubMed  Google Scholar 

  2. Olszewski WL. The innate reaction of the human skin lymphatic system to foreign and self-antigens. Lymphat Res Biol. 2005;3:50–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bruyè F, Noël AS. Lymphangiogenesis: in vitro and in vivo models. FASEB J. 2010;24:8–21.

    Article  CAS  Google Scholar 

  4. Halin C, Detmar M. An unexpected connection: lymph node lymphangiogenesis and dendritic cell migration. Immunity. 2006;24:129–31.

    Article  CAS  PubMed  Google Scholar 

  5. Szuba A, Rockson SG. Lymphedema: anatomy, physiology and pathogenesis. Vasc Med. 1997;2:321–6.

    Article  CAS  PubMed  Google Scholar 

  6. Shin WS, Rockson SG. Animal models for the molecular and mechanistic study of lymphatic biology and disease. Ann N Y Acad Sci. 2008;1131:50–74.

    Article  CAS  PubMed  Google Scholar 

  7. Radhakrishnan K, Rockson SG. Gorham’s disease. Ann N Y Acad Sci. 2008;1131:203–5.

    Article  PubMed  Google Scholar 

  8. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32:629–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120:2340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12:711–6.

    Article  CAS  PubMed  Google Scholar 

  12. Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, et al. Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn. 2006;235:1554–62.

    Article  CAS  PubMed  Google Scholar 

  13. Mahadevan A, Welsh IC, Sivakumar A, Gludish DW, Shilvock AR, Noden DM, et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev Cell. 2014;31:690–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Stanczuk L, Martinez-Corral I, Ulvmar MH, Zhang Y, Laviña B, Fruttiger M, et al. cKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 2015;10:1708–21 This study demonstrates that part of the mesenteric lymphatic vasculature develops from cKit lineage cells of hemogenic endothelial origin, breaking the current dogma that all mammalian lymphatic vessels form by sprouting from veins.

    Article  CAS  PubMed  Google Scholar 

  15. Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K, John SWM, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res. 2015;116:1649–54.

    Article  CAS  PubMed  Google Scholar 

  17. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell. 1999;98:769–78.

    Article  CAS  PubMed  Google Scholar 

  18. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Escobedo N, Oliver G. Lymphangiogenesis: origin, specification, and cell fate determination. Annu Rev Cell Dev Biol. 2016;32:677–91.

    Article  CAS  PubMed  Google Scholar 

  20. Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells. 2009;14:425–34.

    Article  CAS  PubMed  Google Scholar 

  21. • Ma W, Oliver G. Lymphatic endothelial cell plasticity in development and disease. Physiology. 2017;32:444–52 A review where the authors provide an overview of the molecular mechanisms promoting lymphatic cell fate specification in the mammalian embryo and summarize available data suggesting that lymphatic EC fate is reprogrammable in normal and pathological settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1902;1:367–89.

    Article  Google Scholar 

  23. Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003;22:3546–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG, et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol. 2006;169:708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008;118:40–50.

    Article  CAS  PubMed  Google Scholar 

  27. Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140:2365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pedrioli DML, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, et al. miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. Mol Cell Biol. 2010;30:3620–34.

    Article  CAS  PubMed  Google Scholar 

  29. Kazenwadel J, Michael MZ, Harvey NL. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood. 2010;116:2395–401.

    Article  CAS  PubMed  Google Scholar 

  30. Seo M, Choi J-S, Rho C, Joo C-K, Lee S. MicroRNA miR-466 inhibits lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci. 2015;22:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abtahian F, Guerriero A, Sebzda E, Lu M-M, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 2003;299:247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sebzda E, Hibbard C, Sweeney S, Abtahian F, Bezman N, Clemens G, et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell. 2006;11:349–61.

    Article  CAS  PubMed  Google Scholar 

  33. Christou CM, Pearce AC, Watson AA, Mistry AR, Pollitt AY, Fenton-May AE, et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J. 2008;411:133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282:25993–6001.

    Article  CAS  Google Scholar 

  35. Bäckhed F, Crawford PA, O’Donnell D, Gordon JI. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci U S A. 2007;104:606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bischoff J. Cell adhesion and angiogenesis. J Clin Invest. 1997;99:373–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Julenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology. 2005;15:153–64.

    Article  CAS  PubMed  Google Scholar 

  38. •• Tanaka M, Iwakiri Y. The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol. 2016;2:733–49 This article reviews the current knowledge of the structure, function, and markers of the hepatic lymphatic vascular system as well as factors associated with hepatic lymphangiogenesis and compares liver lymphatics with those in other tissues.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ohtani O, Ohtani Y. Lymph circulation in the liver. Anat Rec Adv Integr Anat Evol Biol. 2008;291:643–52.

    Article  Google Scholar 

  40. • Tanaka M, Iwakiri Y. Lymphatics in the liver. Curr Opin Immunol. 2018;53:137–42 A review article addressing the potential role of lymphatic endothelial cells in the health and the disease of the liver.

    Article  CAS  PubMed  Google Scholar 

  41. Dumont AE, Mulholland JH. Alterations in thoracic duct lymph flow in hepatic cirrhosis: significance in portal hypertension. Ann Surg. 1962;156:668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Witte CL, Witte MH, Dumont AE, Frist J, Cole WR. Lymph protein in hepatic cirrhosis and experimental hepatic and portal venous hypertension. Ann Surg. 1968;168:567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.

    Article  CAS  PubMed  Google Scholar 

  44. Tugues S, Morales-Ruiz M, Fernandez-Varo G, Ros J, Arteta D, Muñoz-Luque J, et al. Microarray analysis of endothelial differentially expressed genes in liver of cirrhotic rats. Gastroenterology. 2005;129:1686–95.

    Article  CAS  PubMed  Google Scholar 

  45. Chung C, Iwakiri Y. The lymphatic vascular system in liver diseases: its role in ascites formation. Clin Mol Hepatol. 2013;19:99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lukacs-Kornek V. The role of lymphatic endothelial cells in liver injury and tumor development. Front Immunol. 2016;7:548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. • Tanaka M, Utsumi T, Saruwatari J, Zhang PP, Morales-Ruiz M, Iwakiri Y, et al. The sympathetic nervous system is a novel regulator of hepatic lymphangiogenesis in portal hypertension. Hepatology. 2018;68:772A Abstract indicating a link between sympathetic nervous system activation and liver lymphangiogenesis, sympathetic nerves are a key regulator of hepatic lymphangiogenesis by secreting VEGF-C in rats with portal hypertension.

    Google Scholar 

  48. Dumont AE, Mulholland JH. Flow rate and composition of thoracic-duct lymph in patients with cirrhosis. N Engl J Med. 1960;263:471–4.

    Article  CAS  PubMed  Google Scholar 

  49. Sadek AM, Ismail AM, Aboul Enein A, Hassanein E, Massoud OG, El-Assi MH. Percutaneous trans hepatic lymphography: evaluation in schistosomal hepatic fibrosis. Lymphology. 1976;9:47–52.

    CAS  PubMed  Google Scholar 

  50. Shimada Y. Observations on hepatic superficial lymph flow. Lymphology. 1979;12:11–3.

    CAS  PubMed  Google Scholar 

  51. Niiyama G. A scanning electron microscopic study of subcapsular lymphatic capillaries of the normal liver and the liver in Budd-Chiari syndrome after chemical digestion. Kawasaki Med J. 1994;20:37–52.

    Google Scholar 

  52. Vollmar B, Wolf B, Siegmund S, Katsen AD, Menger MD. Lymph vessel expansion and function in the development of hepatic fibrosis and cirrhosis. Am J Pathol. 1997;151:169–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamauchi Y, Michitaka K, Onji M. Morphometric analysis of lymphatic and blood vessels in human chronic viral liver diseases. Am J Pathol. 1998;153:1131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yokomori H, Oda M, Kaneko F, Kawachi S, Tanabe M, Yoshimura K, et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver--re-evaluations of microlymphatic abnormalities. BMC Gastroenterol. 2010;10:131.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Henriksen JH. Estimation of lymphatic conductance. A model based on protein-kinetic studies and haemodynamic measurements in patients with cirrhosis of the liver and in pigs. Scand J Clin Lab Invest. 1985;45:123–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ribera J, Pauta M, Melgar-Lesmes P, Tugues S, Fernández-Varo G, Held KF, et al. Increased nitric oxide production in lymphatic endothelial cells causes impairment of lymphatic drainage in cirrhotic rats. Gut. 2013;62:138–45.

    Article  CAS  PubMed  Google Scholar 

  57. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73:1–78.

    Article  CAS  PubMed  Google Scholar 

  58. Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F, Lin MI, et al. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res. 2004;95:204–9.

    Article  CAS  PubMed  Google Scholar 

  59. Witte CL, Witte MH, Dumont AE. Lymph imbalance in the genesis and perpetuation of the ascites syndrome in hepatic cirrhosis. Gastroenterology. 1980;78:1059–68.

    Article  CAS  PubMed  Google Scholar 

  60. Arroyo V. Pathophysiology, diagnosis and treatment of ascites in cirrhosis. Ann Hepatol. 2002;1:72–9.

    Article  Google Scholar 

  61. Rector WG. Spontaneous chylous ascites of cirrhosis. J Clin Gastroenterol. 1984;6:369–72.

    PubMed  Google Scholar 

  62. Cheng WSC, Gough IR, Ward M, Croese J, Powell LW. Chylous ascites in cirrhosis: a case report and review of the literature. J Gastroenterol Hepatol. 1989;4:95–9.

    Article  CAS  PubMed  Google Scholar 

  63. Almakdisi T, Massoud S, Makdisi G. Lymphomas and chylous ascites: review of the literature. Oncologist. 2005;10:632–5.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the Ministerio de Ciencia, Innovación y Universidades (SAF2016-75358-R to MM-R), co-financed by FEDER, European Union, a way of making Europe. CIBERehd is financed by Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Morales-Ruiz.

Ethics declarations

Conflict of Interest

Jordi Ribera, Bernat Córdoba-Jover, Irene Portolés and Manuel Morales-Ruiz each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Portal Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribera, J., Córdoba-Jover, B., Portolés, I. et al. The Role of Hepatic and Splanchnic Lymphatic System in Portal Hypertension and Ascites. Curr Hepatology Rep 18, 157–163 (2019). https://doi.org/10.1007/s11901-019-00460-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-019-00460-6

Keywords

Navigation