Current Hepatology Reports

, Volume 17, Issue 3, pp 166–174 | Cite as

Management of Autoimmune Hepatitis Patients Refractory to or Intolerant of Standard Therapies

  • Keaton R. Jones
  • Craig S. Lammert
Autoimmune, Cholestatic, and Biliary Diseases (S Gordon and C Bowlus, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Autoimmune, Cholestatic, and Biliary Diseases


Purpose of Review

Autoimmune hepatitis is a progressive T cell-dependent inflammatory process characterized by elevated autoantibodies, serum globulins, and interface hepatitis. Pharmacologic treatment focuses on achievement of complete biochemical remission. The goal of this paper is to describe the unique features that guide treatment in difficult-to-control cases of autoimmune hepatitis.

Recent Findings

Recently published retrospective reviews have noted the efficacy of multiple second- and third-line agents in the treatment of autoimmune hepatitis. There has been no widely accepted approach regarding which agents to use in specific patient populations.


This paper attempts to summarize recent evidence regarding treatment efficacy of second- and third-line therapies and addresses patient-specific considerations when deciding which therapies to choose.


Autoimmune hepatitis Second-line Mycophenolate Calcineurin inhibitor mTOR Rituximab Skin cancer 


Compliance with Ethical Standards

Conflict of Interest

Keaton R Jones and Craig S Lammert declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1(1):113–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Hennes EM, Zeniya M, Czaja AJ, Pares A, Dalekos GN, Krawitt EL, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology (Baltimore, MD). 2008;48(1):169–76.CrossRefGoogle Scholar
  3. 3.
    EASL Clinical Practice Guidelines: autoimmune hepatitis. J Hepatol. 2015;63(4):971–1004.Google Scholar
  4. 4.
    Manns MP, Czaja AJ, Gorham JD, Krawitt EL, Mieli-Vergani G, Vergani D, et al. Diagnosis and management of autoimmune hepatitis. Hepatology. 2010;51(6):2193–213.CrossRefPubMedGoogle Scholar
  5. 5.
    Ngu JH, Gearry RB, Frampton CM, Stedman CA. Predictors of poor outcome in patients w ith autoimmune hepatitis: a population-based study. Hepatology (Baltimore, MD). 2013;57(6):2399–406.CrossRefGoogle Scholar
  6. 6.
    Hubener S, Oo YH, Than NN, Hubener P, Weiler-Normann C, Lohse AW, et al. Efficacy of 6-Mercaptopurine as second-line treatment for patients with autoimmune hepatitis and azathioprine intolerance. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2016;14(3):445–53.Google Scholar
  7. 7.
    Legue C, Legros L, Kammerer-Jacquet S, Jezequel C, Houssel-Debry P, Uguen T, et al. Safety and efficacy of 6-thioguanine as a second-line treatment for autoimmune hepatitis. Clin gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2018;16(2):290–1.Google Scholar
  8. 8.
    Dhaliwal HK, Anderson R, Thornhill EL, Schneider S, McFarlane E, Gleeson D, et al. Clinical significance of azathioprine metabolites for the maintenance of remission in autoimmune hepatitis. Hepatology (Baltimore, MD). 2012;56(4):1401–8.CrossRefGoogle Scholar
  9. 9.
    Gleeson D, Heneghan MA. British Society of Gastroenterology (BSG) guidelines for management of autoimmune hepatitis. Gut. 2011;60(12):1611–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Czaja AJ. Safety issues in the management of autoimmune hepatitis. Expert Opin Drug Saf. 2008;7(3):319–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology (Baltimore, MD). 2007;46(4):1138–45.CrossRefGoogle Scholar
  12. 12.
    Selvarajah V, Montano-Loza AJ, Czaja AJ. Systematic review: managing suboptimal treatment responses in autoimmune hepatitis with conventional and nonstandard drugs. Aliment Pharmacol Ther. 2012;36(8):691–707.CrossRefPubMedGoogle Scholar
  13. 13.
    Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: standard treatment and systematic review of alternative treatments. World J Gastroenterol. 2017;23(33):6030–48.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    • Czaja AJ. Diagnosis and Management of Autoimmune Hepatitis: current status and future directions. Gut Liver. 2016;10(2):177–203. Review of alternative drug regimens and future directions of therapy. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liberal R, Vergani D, Mieli-Vergani G. Update on autoimmune hepatitis. J Clin Transl Hepatol. 2015;3(1):42–52.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Than NN, Jeffery HC, Oo YH. Autoimmune hepatitis: progress from global immunosuppression to personalised regulatory T cell therapy. Can J Gastroenterol Hepatol. 2016;2016:7181685.PubMedPubMedCentralGoogle Scholar
  17. 17.
    • Manns MP, Lohse AW, Vergani D. Autoimmune hepatitis—update 2015. J Hepatol. 2015;62(1 Suppl):S100–11. Recent review of second-line therapies and associated side effects. CrossRefPubMedGoogle Scholar
  18. 18.
    Miyake Y, Iwasaki Y, Terada R, Okamaoto R, Ikeda H, Makino Y, et al. Persistent elevation of serum alanine aminotransferase levels leads to poor survival and hepatocellular carcinoma development in type 1 autoimmune hepatitis. Aliment Pharmacol Ther. 2006;24(8):1197–205.CrossRefPubMedGoogle Scholar
  19. 19.
    Verma S, Gunuwan B, Mendler M, Govindrajan S, Redeker A. Factors predicting relapse and poor outcome in type I autoimmune hepatitis: role of cirrhosis development, patterns of transaminases during remission and plasma cell activity in the liver biopsy. Am J Gastroenterol. 2004;99(8):1510–6.CrossRefPubMedGoogle Scholar
  20. 20.
    De Luca-Johnson J, Wangensteen KJ, Hanson J, Krawitt E, Wilcox R. Natural history of patients presenting with autoimmune hepatitis and coincident nonalcoholic fatty liver disease. Dig Dis Sci. 2016;61(9):2710–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Peiseler M, Liebscher T, Sebode M, Zenouzi R, Hartl J, Ehlken H, et al. Efficacy and limitations of budesonide as a second-line treatment for patients with autoimmune hepatitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2018;16(2):260–7.e1.Google Scholar
  22. 22.
    Delgado JS, Vodonos A, Malnick S, Kriger O, Wilkof-Segev R, Delgado B, et al. Autoimmune hepatitis in southern Israel: a 15-year multicenter study. J Dig Dis. 2013;14(11):611–8.PubMedGoogle Scholar
  23. 23.
    Manns MP, Woynarowski M, Kreisel W, Lurie Y, Rust C, Zuckerman E, et al. Budesonide induces remission more effectively than prednisone in a controlled trial of patients with autoimmune hepatitis. Gastroenterology. 2010;139(4):1198–206.CrossRefPubMedGoogle Scholar
  24. 24.
    Efe C, Taii HA, Ytting H, Aehling N, Bhanji RA, Hagstrom H, et al. Tacrolimus and mycophenolate Mofetil as second-line therapies for pediatric patients with autoimmune hepatitis. Dig Dis Sci. 2018;63:1348–54.CrossRefPubMedGoogle Scholar
  25. 25.
    • Roberts SK, Lim R, Strasser S, Nicoll A, Gazzola A, Mitchell J, et al. Efficacy and safety of mycophenolate mofetil in patients with autoimmune hepatitis and suboptimal outcomes after standard therapy. Clin Gastroenterol Hepatology Off Clin Pract J Am Gastroenterol Assoc. 2018;16(2):268–77. Retrospective study addressing efficacy of mycophenolate in difficult to treat autoimmune hepatitis. Google Scholar
  26. 26.
    •• Efe C, Hagstrom H, Ytting H, Bhanji RA, Muller NF, Wang Q, et al. Efficacy and safety of mycophenolate mofetil and tacrolimus as second-line therapy for patients with autoimmune hepatitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2017;15(12):1950–6.e1. Retrospective review suggesting increased efficacy of tacrolimus over mycophenolate in difficult to treat autoimmune hepatitis. Google Scholar
  27. 27.
    •• Zachou K, Gatselis NK, Arvaniti P, Gabeta S, Rigopoulou EI, Koukoulis GK, et al. A real-world study focused on the long-term efficacy of mycophenolate mofetil as first-line treatment of autoimmune hepatitis. Aliment Pharmacol Ther. 2016;43(10):1035–47. Prospective study of mycophenolate as first-line therapy noting the highest rate of remission off treatment ever published. CrossRefPubMedGoogle Scholar
  28. 28.
    Than NN, Wiegard C, Weiler-Normann C, Fussel K, Mann J, Hodson J, et al. Long-term follow-up of patients with difficult to treat type 1 autoimmune hepatitis on tacrolimus therapy. Scand J Gastroenterol. 2016;51(3):329–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Tannous MM, Cheng J, Muniyappa K, Farooq I, Bharara A, Kappus M, et al. Use of tacrolimus in the treatment of autoimmune hepatitis: a single centre experience. Aliment Pharmacol Ther. 2011;34(3):405–7.CrossRefPubMedGoogle Scholar
  30. 30.
    • Chatrath H, Allen L, Boyer TD. Use of sirolimus in the treatment of refractory autoimmune hepatitis. Am J Med. 2014;127(11):1128–31. Longitudinal follow-up looking at response rates in patients treated with sirolimus for steroid-refractory disease. CrossRefPubMedGoogle Scholar
  31. 31.
    • Ytting H, Larsen FS. Everolimus treatment for patients with autoimmune hepatitis and poor response to standard therapy and drug alternatives in use. Scand J Gastroenterol. 2015;50(8):1025. Single-center experience using everolimus for difficult-to-control disease CrossRefPubMedGoogle Scholar
  32. 32.
    Efe C, Ozaslan E, Kav T, Purnak T, Shorbagi A, Ozkayar O, et al. Liver fibrosis may reduce the efficacy of budesonide in the treatment of autoimmune hepatitis and overlap syndrome. Autoimmun Rev. 2012;11(5):330–4.CrossRefPubMedGoogle Scholar
  33. 33.
    • De Lemos-Bonotto M, Valle-Tovo C, Costabeber AM, Mattos AA, Azeredo-da-Silva ALF. A systematic review and meta-analysis of second-line immunosuppressants for autoimmune hepatitis treatment. Eur J Gastroenterol Hepatol. 2018;30(2):212–6. Large meta-analysis looking at experience with second-line therapies. CrossRefPubMedGoogle Scholar
  34. 34.
    Srinivas TR, Meier-Kriesche HU, Kaplan B. Pharmacokinetic principles of immunosuppressive drugs. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2005;5(2):207–17.CrossRefGoogle Scholar
  35. 35.
    Taber DJ, Gebregziabher MG, Srinivas TR, Chavin KD, Baliga PK, Egede LE. African-American race modifies the influence of tacrolimus concentrations on acute rejection and toxicity in kidney transplant recipients. Pharmacotherapy. 2015;35(6):569–77.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Van Thiel DH, Wright H, Carroll P, Abu-Elmagd K, Rodriguez-Rilo H, McMichael J, et al. Tacrolimus: a potential new treatment for autoimmune chronic active hepatitis: results of an open-label preliminary trial. Am J Gastroenterol. 1995;90(5):771–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Heneghan MARP, Mcfarlane IG, Portmann B, Harrison PM. Low dose tacrolimus as treatment of severe autoimmune hepatitis: potential role in remission induction. Gut. 1999;44(supple 1):A61.Google Scholar
  38. 38.
    Larsen FS, Vainer B, Eefsen M, Bjerring PN, Adel Hansen B. Low-dose tacrolimus ameliorates liver inflammation and fibrosis in steroid refractory autoimmune hepatitis. World J Gastroenterol. 2007;13(23):3232–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Beermann KJ, Ellis MJ, Sudan DL, Harris MT. Tacrolimus dose requirements in African-American and Caucasian kidney transplant recipients on mycophenolate and prednisone. Clin Transpl. 2014;28(7):762–7.CrossRefGoogle Scholar
  40. 40.
    Mancinelli LM, Frassetto L, Floren LC, Dressler D, Carrier S, Bekersky I, et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther. 2001;69(1):24–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes. 2008;57(4):945–57.CrossRefPubMedGoogle Scholar
  42. 42.
    Subramaniam S, Zell JA, Kunz PL. Everolimus causing severe hypertriglyceridemia and acute pancreatitis. J Natl Compr Cancer Network JNCCN. 2013;11(1):5–9.CrossRefGoogle Scholar
  43. 43.
    Martinet W, De Loof H, De Meyer GR. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis. 2014;233(2):601–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349(9):847–58.CrossRefPubMedGoogle Scholar
  45. 45.
    Akselband Y, Harding MW, Nelson PA. Rapamycin inhibits spontaneous and fibroblast growth factor beta-stimulated proliferation of endothelial cells and fibroblasts. Transplant Proc. 1991;23(6):2833–6.PubMedGoogle Scholar
  46. 46.
    Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J Off Publ Fed Am Soc Exp Biol. 2002;16(8):771–80.Google Scholar
  47. 47.
    Trotter JF, Lizardo-Sanchez L. Everolimus in liver transplantation. Curr Opin Organ Transplant. 2014;19(6):578–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2006;6(5 Pt 1):859–66.CrossRefGoogle Scholar
  49. 49.
    Burak KW, Swain MG, Santodomingo-Garzon T, Lee SS, Urbanski SJ, Aspinall AI, et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol. 2013;27(5):273–80.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rubin JN, Te HS. Refractory autoimmune hepatitis: beyond standard therapy. Dig Dis Sci. 2016;61(6):1757–62.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh JA, Wells GA, Christensen R, Tanjong Ghogomu E, Maxwell L, Macdonald JK, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011(2):Cd008794.Google Scholar
  52. 52.
    Goldberg SL, Pecora AL, Alter RS, Kroll MS, Rowley SD, Waintraub SE, et al. Unusual viral infections (progressive multifocal leukoencephalopathy and cytomegalovirus disease) after high-dose chemotherapy with autologous blood stem cell rescue and peritransplantation rituximab. Blood. 2002;99(4):1486–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Tsutsumi Y, Yamamoto Y, Ito S, Ohigashi H, Shiratori S, Naruse H, et al. Hepatitis B virus reactivation with a rituximab-containing regimen. World J Hepatol. 2015;7(21):2344–51.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Weiler-Normann C, Schramm C, Quaas A, Wiegard C, Glaubke C, Pannicke N, et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol. 2013;58(3):529–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Haridy J, Nicoll A, Sood S. Methotrexate therapy for autoimmune hepatitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2018;16(2):288–9.Google Scholar
  56. 56.
    Long MD, Herfarth HH, Pipkin CA, Porter CQ, Sandler RS, Kappelman MD. Increased risk for non-melanoma skin cancer in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2010;8(3):268–74.Google Scholar
  57. 57.
    Pedersen N, Duricova D, Elkjaer M, Gamborg M, Munkholm P, Jess T. Risk of extra-intestinal cancer in inflammatory bowel disease: meta-analysis of population-based cohort studies. Am J Gastroenterol. 2010;105(7):1480–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Peyrin-Biroulet L, Khosrotehrani K, Carrat F, Bouvier AM, Chevaux JB, Simon T, et al. Increased risk for nonmelanoma skin cancers in patients who receive thiopurines for inflammatory bowel disease, 1621. Gastroenterology. 2011;141(5):–28.e1–5.Google Scholar
  59. 59.
    Jiyad Z, Olsen CM, Burke MT, Isbel NM, Green AC. Azathioprine and risk of skin cancer in organ transplant recipients: systematic review and meta-analysis. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2016;16(12):3490–503.CrossRefGoogle Scholar
  60. 60.
    Pedersen EG, Pottegard A, Hallas J, Friis S, Hansen K, Jensen PE, et al. Risk of non-melanoma skin cancer in myasthenia patients treated with azathioprine. Eur J Neurol. 2014;21(3):454–8.CrossRefPubMedGoogle Scholar
  61. 61.
    van den Reek JM, van Lumig PP, Janssen M, Schers HJ, Hendriks JC, van de Kerkhof PC, et al. Increased incidence of squamous cell carcinoma of the skin after long-term treatment with azathioprine in patients with auto-immune inflammatory rheumatic diseases. J Eur Acad Dermatol Venereol JEADV. 2014;28(1):27–33.CrossRefPubMedGoogle Scholar
  62. 62.
    Ramsay HM, Fryer AA, Hawley CM, Smith AG, Harden PN. Non-melanoma skin cancer risk in the Queensland renal transplant population. Br J Dermatol. 2002;147(5):950–6.CrossRefPubMedGoogle Scholar
  63. 63.
    O'Neill JO, Edwards LB, Taylor DO. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transpl Off Publ Int Soc Heart Transpl. 2006;25(10):1186–91.CrossRefGoogle Scholar
  64. 64.
    Mittal A, Colegio OR. Skin cancers in organ transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2017;17(10):2509–30.CrossRefGoogle Scholar
  65. 65.
    Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003;348(17):1681–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Ulrich C, Arnold R, Frei U, Hetzer R, Neuhaus P, Stockfleth E. Skin changes following organ transplantation: an interdisciplinary challenge. Dtsch Arzteb Int. 2014;111(11):188–94.Google Scholar
  67. 67.
    Colegio OR, Hanlon A, Olasz EB, Carucci JA. Sirolimus reduces cutaneous squamous cell carcinomas in transplantation recipients. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(26):3297–8.CrossRefGoogle Scholar
  68. 68.
    Westbrook RH, Yeoman AD, Kriese S, Heneghan MA. Outcomes of pregnancy in women with autoimmune hepatitis. J Autoimmun. 2012;38(2–3):J239–44.CrossRefPubMedGoogle Scholar
  69. 69.
    Ban L, Tata LJ, Fiaschi L, Card T. Limited risks of major congenital anomalies in children of mothers with IBD and effects of medications. Gastroenterology. 2014;146(1):76–84.CrossRefPubMedGoogle Scholar
  70. 70.
    Saavedra MA, Sanchez A, Morales S, Angeles U, Jara LJ. Azathioprine during pregnancy in systemic lupus erythematosus patients is not associated with poor fetal outcome. Clin Rheumatol. 2015;34(7):1211–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Armenti VT, Radomski JS, Moritz MJ, Gaughan WJ, Philips LZ, McGrory CH, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl. 2002:121–30.Google Scholar
  72. 72.
    Hebert MF, Zheng S, Hays K, Shen DD, Davis CL, Umans JG, et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. Transplantation. 2013;95(7):908–15.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jain AB, Shapiro R, Scantlebury VP, Potdar S, Jordan ML, Flohr J, et al. Pregnancy after kidney and kidney-pancreas transplantation under tacrolimus: a single center's experience. Transplantation. 2004;77(6):897–902.CrossRefPubMedGoogle Scholar
  74. 74.
    Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation. 2006;82(12):1698–702.CrossRefPubMedGoogle Scholar
  75. 75.
    Coscia LA, Constantinescu S, Moritz MJ, Frank A, Ramirez CB, Maley WL, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl. 2009:103–22.Google Scholar
  76. 76.
    Yamamura M, Kojima T, Koyama M, Sazawa A, Yamada T, Minakami H. Everolimus in pregnancy: case report and literature review. J Obstet Gynaecol Res. 2017;43(8):1350–2.CrossRefPubMedGoogle Scholar
  77. 77.
    Chakravarty EF, Murray ER, Kelman A, Farmer P. Pregnancy outcomes after maternal exposure to rituximab. Blood. 2011;117(5):1499–506.CrossRefPubMedGoogle Scholar
  78. 78.
    Sepkowitz KA, Brown AE, Armstrong D. Pneumocystis carinii pneumonia without acquired immunodeficiency syndrome. More patients, same risk. Arch Intern Med. 1995;155(11):1125–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Sepkowitz KA, Brown AE, Telzak EE, Gottlieb S, Armstrong D. Pneumocystis carinii pneumonia among patients without AIDS at a cancer hospital. JAMA. 1992;267(6):832–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Redondo-Benito A, Curran A, Villar-Gomez A, Trallero-Araguas E, Fernandez-Codina A, Pinal-Fernandez I, et al. Opportunistic infections in patients with idiopathic inflammatory myopathies. Int J Rheum Dis. 2018;21(2):487–96.CrossRefPubMedGoogle Scholar
  81. 81.
    Park JW, Curtis JR, Moon J, Song YW, Kim S, Lee EB. Prophylactic effect of trimethoprim-sulfamethoxazole for pneumocystis pneumonia in patients with rheumatic diseases exposed to prolonged high-dose glucocorticoids. Ann Rheum Dis. 2017;Google Scholar
  82. 82.
    Amber KT, Lamberts A, Solimani F, Agnoletti AF, Didona D, Euverman I, et al. Determining the incidence of pneumocystis pneumonia in patients with autoimmune blistering diseases not receiving routine prophylaxis. JAMA Dermatol. 2017;153(11):1137–41.CrossRefPubMedGoogle Scholar
  83. 83.
    Green H, Paul M, Vidal L, Leibovici L. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV-infected patients: systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2007;82(9):1052–9.CrossRefPubMedGoogle Scholar
  84. 84.
    • Liu Y, Su L, Jiang SJ, Qu H. Risk factors for mortality from pneumocystis carinii pneumonia (PCP) in non-HIV patients: a meta-analysis. Oncotarget. 2017;8(35):59729–39. Meta-analysis showing the limited number of cases of pneumocystis in autoimmune hepatitis. PubMedPubMedCentralGoogle Scholar
  85. 85.
    Mansharamani NG, Balachandran D, Vernovsky I, Garland R, Koziel H. Peripheral blood CD4 + T-lymphocyte counts during Pneumocystis carinii pneumonia in immunocompromised patients without HIV infection. Chest. 2000;118(3):712–20.CrossRefPubMedGoogle Scholar
  86. 86.
    Li Y, Ghannoum M, Deng C, Gao Y, Zhu H, Yu X, et al. Pneumocystis pneumonia in patients with inflammatory or autoimmune diseases: usefulness of lymphocyte subtyping. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2017;57:108–15.Google Scholar
  87. 87.
    Wang X, Zhang Y, Peng Y, Hutchinson MR, Rice KC, Yin H, et al. Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol. 2016;173(5):856–69.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ludwig MD, Zagon IS, McLaughlin PJ. Featured article: serum [met(5)]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone. Exp Biol Med (Maywood, NJ). 2017;242(15):1524–33.CrossRefGoogle Scholar
  89. 89.
    Zagon IS, Rahn KA, Turel AP, McLaughlin PJ. Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis. Exp Biol Med (Maywood, NJ). 2009;234(11):1383–92.CrossRefGoogle Scholar
  90. 90.
    Younger J, Mackey S. Fibromyalgia symptoms are reduced by low-dose naltrexone: a pilot study. Pain Med (Malden, Mass). 2009;10(4):663–72.CrossRefGoogle Scholar
  91. 91.
    Hsu MC, Liu SH, Wang CW, Hu NY, Wu ESC, Shih YC, et al. JKB-122 is effective, alone or in combination with prednisolone in con A-induced hepatitis. Eur J Pharmacol. 2017;812:113–20.CrossRefPubMedGoogle Scholar
  92. 92.
    Bosello S, Youinou P, Daridon C, Tolusso B, Bendaoud B, Pietrapertosa D, et al. Concentrations of BAFF correlate with autoantibody levels, clinical disease activity, and response to treatment in early rheumatoid arthritis. J Rheumatol. 2008;35(7):1256–64.PubMedGoogle Scholar
  93. 93.
    Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis. 2012;71(11):1833–8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Weiss L, Bernstein S, Jones R, Amunugama R, Krizman D, Jebailey L, et al. Preimplantation factor (PIF) analog prevents type I diabetes mellitus (TIDM) development by preserving pancreatic function in NOD mice. Endocrine. 2011;40(1):41–54.CrossRefPubMedGoogle Scholar
  95. 95.
    Weiss L, Or R, Jones RC, Amunugama R, JeBailey L, Ramu S, et al. Preimplantation factor (PIF*) reverses neuroinflammation while promoting neural repair in EAE model. J Neurol Sci. 2012;312(1–2):146–57.CrossRefPubMedGoogle Scholar
  96. 96.
    Azar Y, Shainer R, Almogi-Hazan O, Bringer R, Compton SR, Paidas MJ, et al. Preimplantation factor reduces graft-versus-host disease by regulating immune response and lowering oxidative stress (murine model). Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2013;19(4):519–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineIndiana University School of MedicineIndianapolisUSA

Personalised recommendations