Skip to main content

Advertisement

Log in

Future Therapy for HBV: Role of Cell Cycle Inhibitors

  • Hepatitis B (JK Lim, Section Editor)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Despite the discovery of an effective vaccine over 30 years ago, hepatitis B virus (HBV) infection remains a significant cause of global mortality and morbidity affecting over 250 million individuals. Fortunately, many new antiviral agents targeting different steps of the HBV lifecycle are currently being developed marking a true shift in the treatment paradigm. It is hopeful these new therapies will provide a functional and durable cure from HBV infection from a finite duration of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529–38.

    Article  PubMed  Google Scholar 

  2. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–55. New World Health Organization estimates on the global prevalence of chronic Hepatitis B infection.

    Article  PubMed  Google Scholar 

  3. Terrault NA, Bzowej NH, Chang K-M, Hwang JP, Jonas MM, Murad MH. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63:261–83. Latest guidelines on the diagnosis and management of chronic hepatitis B infection.

    Article  PubMed  Google Scholar 

  4. Papatheodoridis G, Buti M, Cornberg M, the European Association For The Study Of The Liver, et al. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol. 2012;57:167–85.

    Article  Google Scholar 

  5. Liaw YF, Kao JH, Piratvisuth T, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol Int. 2012;6:531–61.

    Article  PubMed  Google Scholar 

  6. Ahn J, Lee HM, Lim JK, Pan CQ, Nguyen MH, Ray Kim W, et al. Entecavir safety and effectiveness in a national cohort of treatment-naïve chronic hepatitis B patients in the US—the ENUMERATE study. Aliment Pharmacol Ther. 2016;43:134–44.

    Article  CAS  PubMed  Google Scholar 

  7. Marcellin P, Gane EJ, Flisiak R, et al. Long term treatment with tenofovir disoproxil fumarate for chronic hepatitis B infection is safe and well tolerated and associated with durable virologic response with no detectable resistance: 8 year results from two phase 3 trials. Boston: 65th Annual Meeting of the American Association for the Study of Liver Diseases; 2014.

    Google Scholar 

  8. Agarwal K, Fung SK, Nguyen TT, et al. Twenty-eight day safety, antiviral activity, and pharmacokinetics of tenofovir alafenamide for treatment of chronic hepatitis B infection. J Hepatol. 2015;62:533–40.

    Article  CAS  PubMed  Google Scholar 

  9. Lai CL, Wong D, Ip P, et al. Profound reduction of HBV covalently closed circular DNA with long-term nucleoside/tide analogue therapy. Boston: 65th Annual Meeting of the American Association for the Study of Liver Diseases; 2014.

    Google Scholar 

  10. Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antivir Ther. 2010;15:451–61.

    Article  CAS  PubMed  Google Scholar 

  11. Lau GK, Piratvisuth T, Luo KX, and the Peginterferon Alfa-2a HBeAg-Positive Chronic Hepatitis B Study Group, et al. Peginterferon alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005;352:2682–95.

    Article  CAS  PubMed  Google Scholar 

  12. Marcellin P, Lau GK, Bonino F, and the Peginterferon Alfa-2a HBeAg-Negative Chronic Hepatitis B Study Group, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004;351:1206–17.

    Article  CAS  PubMed  Google Scholar 

  13. Buster EH, Flink HJ, Cakaloglu Y, et al. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon alpha-2b. Gastroenterology. 2008;135:459–67.

    Article  CAS  PubMed  Google Scholar 

  14. van Zonneveld M, Honkoop P, Hansen BE, et al. Long-term follow-up of alpha-interferon treatment of patients with chronic hepatitis B. Hepatology. 2004;39:804–10.

    Article  CAS  PubMed  Google Scholar 

  15. Janssen HL, van Zonneveld M, Senturk H, and the HBV 99-01 Study Group, the Rotterdam Foundation for Liver Research, et al. Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomized trial. Lancet. 2005;365:123–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ning Q, Han M, Sun Y, et al. Switching from entecavir to PegIFN alfa-2a in patients with HBeAg-positive chronic hepatitis B: a randomised open-label trial (OSST trial). J Hepatol. 2014;61:777–84.

    Article  CAS  PubMed  Google Scholar 

  17. Shi M, Wang RS, Zhang H, et al. Sequential treatment with lamivudine and interferon-alpha monotherapies in hepatitis B e antigen-negative Chinese patients and its suppression of lamivudine-resistant mutations. J Antimicrob Chemother. 2006;58:1031–5.

    Article  CAS  PubMed  Google Scholar 

  18. Chan HL, Leung NW, Hui AY, et al. A randomized, controlled trial of combination therapy for chronic hepatitis B: comparing pegylated interferon-alpha2b and lamivudine with lamivudine alone. Ann Intern Med. 2005;142:240–50.

    Article  CAS  PubMed  Google Scholar 

  19. Brouwer WP, Xie Q, Sonneveld MJ, et al. Adding pegylated interferon to entecavir for hepatitis B e antigen-positive chronic hepatitis B: a multicenter randomized trial (ARES study). Hepatology. 2015;61:1512–22.

    Article  CAS  PubMed  Google Scholar 

  20. Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology. 2014;147:48–64.

    Article  CAS  PubMed  Google Scholar 

  21. Claro da Silva T, Polli JE, Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med. 2013;34:252–69.

    Article  CAS  PubMed  Google Scholar 

  22. Eloranta JJ, Jung D, Kullak-Ublick GA. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol. 2006;20:65–79.

    Article  CAS  PubMed  Google Scholar 

  23. Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79:1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schulze A, Schieck A, Ni Y, Mier W, Urban S. Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction. J Virol. 2010;84:1989–2000.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen J, Dandri M, Mier W, et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008;26:335–41.

    Article  CAS  PubMed  Google Scholar 

  26. Volz T, Allweiss L, Ben MBarek M, et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J Hepatol. 2013;58:861–7. First study showing the effectiveness of Myrcludex B inactivating the NTCP receptor and preventing new hepatitis B infection.

    Article  CAS  PubMed  Google Scholar 

  27. Watashi K, Sluder A, Daito T, Matsunaga S, Ryo A, Nagamori S, et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter NTCP. Hepatology. 2014;59:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nkongolo S, Ni Y, Lempp FA, et al. Cyclosporin A inhibits hepatitis B and hepatitis D virus entry by cyclophilin-independent interference with the NTCP receptor. J Hepatol. 2014;60:723–31.

    Article  CAS  PubMed  Google Scholar 

  29. Zimmerman KA, Fischer KP, Joyce MA, Tyrrell DL. Zinc finger proteins designed to specifically target duck hepatitis B virus covalently closed circular DNA inhibit viral transcription in tissue culture. J Virol. 2008;82:8013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Zhang W, Lin J, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther. 2014;22(2):303–11.

    Article  CAS  PubMed  Google Scholar 

  31. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70. A concise overview of the CRISPR system.

    Article  CAS  PubMed  Google Scholar 

  32. Seeger C, Sohn JA. Targeting hepatitis B virus with CRISPR/Cas9. Mol Ther Nucleic Acids. 2014;3(12):e216. doi:10.1038/mtna.2014.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 2015;118:110–7.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Hao R, Chen S, Guo D, Chen Y. Inhibition of hepatitis B virus by CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol. 2015;96:2252–61.

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy EM, Bassit LC, Mueller H, et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology. 2015;476:196–205.

    Article  CAS  PubMed  Google Scholar 

  36. Belloni L, Allweiss L, Guerrieri F, et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest. 2012;122:529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannon GJ. RNA interference. Nature. 2002;418:244–51.

    Article  CAS  PubMed  Google Scholar 

  38. Klein C, Bock CT, Wedemeyer H, et al. Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology. 2003;125:9–18.

    Article  CAS  PubMed  Google Scholar 

  39. Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003;37:764–70.

    Article  CAS  PubMed  Google Scholar 

  40. Yuen M, Chan H, Liu K, et al. ARC-520 produces deep and durable knockdown of viral antigens and DNA in a phase II study in patients with chronic hepatitis B. San Francisco: 66th Annual Meeting of the American Association for the Study of Liver Diseases; 2015.

    Google Scholar 

  41. Gish RD, Yuen MF, Chan HL, et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antiviral Res 2015;121:97–108.

  42. Feld JJ, Colledge D, Sozzi V, Edwards R, Littlejohn M, Locarnini SA. The phenylpropenamide derivative AT-130 blocks HBV replication at the level of viral RNA packaging. Antiviral Res. 2007;76:168–77.

    Article  CAS  PubMed  Google Scholar 

  43. Deres K, Schroder CH, Paessens A, et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science. 2003;299:893–6.

    Article  CAS  PubMed  Google Scholar 

  44. Stray SJ, Bourne CR, Punna S, Lewis WG, Finn MG, Zlotnick A. A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly. Proc Natl Acad Sci U S A. 2005;102:8138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu GY, Zheng XJ, Yin CC, et al. Inhibition of hepatitis B virus replication by Bay 41-4109 and its association with nucleocapsid disassembly. J Chemother. 2008;20:458–67.

    Article  PubMed  Google Scholar 

  46. Delaney 4th WE, Edwards R, Colledge D, et al. Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro. Antimicrob Agents Chemother. 2002;46:3057–60.

    Article  CAS  PubMed  Google Scholar 

  47. Liaw S, Brown N, Klumpp K, et al. Phase 1b efficacy and safely of NVR 3-778, a first-in-class HBV core inhibitor, in HBeAg-positive patients with chronic HBV infection. San Francisco: 66th Annual Meeting of the American Association for the Study of Liver Diseases; 2015.

    Google Scholar 

  48. Bertoletti A, Ferrari C. Innate and adaptive immune responses in chronic hepatitis B virus infections: towards restoration of immune control of viral infection. Gut. 2012;61:1754–64.

    Article  CAS  PubMed  Google Scholar 

  49. Korba BE, Montero AB, Farrar K, et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antiviral Res. 2008;77:56–63.

    Article  CAS  PubMed  Google Scholar 

  50. Dougherty AM, Guo H, Westby G, et al. A substituted tetrahydro-tetrazolo-pyrimidine is a specific and novel inhibitor of hepatitis B virus surface antigen secretion. Antimicrob Agents Chemother. 2007;51:4427–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu W, Goddard C, Clearfield E, et al. Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg) secretion. J Med Chem. 2011;54:5660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schadler S, Hildt E. HBV life cycle: entry and morphogenesis. Viruses. 2009;1:185–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siegler VD, Bruss V. Role of transmembrane domains of hepatitis B virus small surface proteins in subviral-particle biogenesis. J Virol. 2013;87:1491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jansen L, Vaillant A, van Dort K, et al. Serum HBV-RNA levels decline significantly in chronic hepatitis B patients dosed with the nucleic-acid polymer REP 2139-Ca. Vienna: 2015 International Liver Congress: 50th Annual Meeting of the European Association for the Study of the Liver (EASL); 2015.

    Google Scholar 

  55. Hopkins S, DiMassimo B, Rusnak P, et al. The cyclophilin inhibitor SCY-635 suppresses viral replication and induces endogenous interferons in patients with chronic HCV genotype 1 infection. J Hepatol. 2012;57:47–54.

    Article  CAS  PubMed  Google Scholar 

  56. Hopkins S, Bobardt M, Chatterji U, Garcia-Rivera JA, Lim P, Gallay PA. The cyclophilin inhibitor SCY-635 disrupts hepatitis C virus NS5A-cyclophilin A complexes. Antimicrob Agents Chemother. 2012;56:3888–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phillips S, Chokshi S, Chatterji U, et al. Alisporivir inhibition of hepatocyte cyclophilins reduces HBV replication and hepatitis B surface antigen production. Gastroenterology. 2015;148:403–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank David Smookler for his help with the illustration of the hepatitis B virus lifecycle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry L. A. Janssen.

Ethics declarations

Conflict of Interest

MB declares that he has no conflict of interest. HLAJ reports research support, consulting, or speaking fees from Gilead, Novartis, Roche, Merck, AbbVie, Bristol-Myers Squibb, Arbutus, Janssen, MedImmune, and Ionis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Hepatitis B

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahmania, M., Janssen, H.L.A. Future Therapy for HBV: Role of Cell Cycle Inhibitors. Curr Hepatology Rep 15, 245–251 (2016). https://doi.org/10.1007/s11901-016-0313-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-016-0313-y

Keywords

Navigation