Skip to main content

Advertisement

Log in

Non-cirrhotic Hyperammonemia—When High Ammonia Is not Always from Cirrhosis

  • Management of the Cirrhotic Patient (NS Reau and A Cardenas, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Though elevated ammonia is often associated with the presence of intrinsic liver disease, several other causes need to be considered. Elevated ammonia can either be related to increased production of ammonia due to a catabolic state (e.g., protein degradation) or due to decreased clearance. Diagnostic workup of elevated ammonia levels involves consideration of the following questions: (1) Is there evidence of underlying liver disease? (2) Is hyperammonemia due to increased production or decreased clearance of ammonia? (3) Is elevated ammonia simply a bystander to obvious clinical scenarios (e.g., septic shock), or does it imply the need for further workup of unrecognized entities (e.g., urea cycle defect) that need prompt attention?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ge PS, Runyon BA. Serum ammonia level for the evaluation of hepatic encephalopathy. JAMA. 2014;312:643–4.

    Article  CAS  PubMed  Google Scholar 

  2. Haberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders. Arch Biochem Biophys. 2013;536:101–8. A review that explains in detail, the urea cycle, its enzymes and summarizes the biochemical background of primary and secondary hyperammonemic disorders.

    Article  CAS  PubMed  Google Scholar 

  3. Maranda B, Cousineau J, Allard P, et al. False positives in plasma ammonia measurement and their clinical impact in a pediatric population. Clin Biochem. 2007;40:531–5.

    Article  CAS  PubMed  Google Scholar 

  4. Nikolac N, Omazic J, Simundic AM. The evidence based practice for optimal sample quality for ammonia measurement. Clin Biochem. 2014;47:991–5. This study investigates several pre-analytical factors that lead to falsely elevated plasma ammonia levels.

    Article  CAS  PubMed  Google Scholar 

  5. Lee WM, Squires Jr RH, Nyberg SL, et al. Acute liver failure: summary of a workshop. Hepatology. 2008;47:1401–15.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bernal W, Hall C, Karvellas CJ, et al. Arterial ammonia and clinical risk factors for encephalopathy and intracranial hypertension in acute liver failure. Hepatology. 2007;46:1844–52.

    Article  CAS  PubMed  Google Scholar 

  7. Butterworth RF. Pathophysiology of brain dysfunction in hyperammonemic syndromes: The many faces of glutamine. Mol Genet Metab 2014. Comprehensive review of the pathophysiology and cytotoxic effects of hyperammonemia induced, elevated brain glutamine.

  8. Butterworth RF. Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology. 2011;53:1372–6.

    Article  PubMed  Google Scholar 

  9. Bhatia V, Singh R, Acharya SK. Predictive value of arterial ammonia for complications and outcome in acute liver failure. Gut. 2006;55:98–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tofteng F, Hauerberg J, Hansen BA, et al. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab. 2006;26:21–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar R, Shalimar, Sharma H, et al. Persistent hyperammonemia is associated with complications and poor outcomes in patients with acute liver failure. Clin Gastroenterol Hepatol. 2012;10:925–31. Excellent prospective observation study that evaluates survival and complications associated with persistent hyperammonemia during the first three days of acute liver failure. The study reveals that elevated ammonia levels are associated with worse outcomes and more complications in patients with ALF.

    Article  CAS  PubMed  Google Scholar 

  12. Noiret L, Baigent S, Jalan R. Arterial ammonia levels in cirrhosis are determined by systemic and hepatic hemodynamics, and by organ function: a quantitative modelling study. Liver Int. 2014;34:e45–55. Innovative study, using two different mathematical models demonstrates that portosystemic shunting in itself is sufficient to cause hyperammonemia in cirrhosis. It also suggests that strategies to lower ammonia by bowel cleansing or muscle detoxification might be less important than the former in patients with cirrhosis.

    Article  PubMed  Google Scholar 

  13. Zardi EM, Uwechie V, Caccavo D, et al. Portosystemic shunts in a large cohort of patients with liver cirrhosis: detection rate and clinical relevance. J Gastroenterol. 2009;44:76–83.

    Article  PubMed  Google Scholar 

  14. Olde Damink SW, Jalan R, Redhead DN, et al. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology. 2002;36:1163–71.

    Article  CAS  PubMed  Google Scholar 

  15. Riggio O, Masini A, Efrati C, et al. Pharmacological prophylaxis of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt: a randomized controlled study. J Hepatol. 2005;42:674–9.

    Article  CAS  PubMed  Google Scholar 

  16. Laleman W, Simon-Talero M, Maleux G, et al. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. Hepatology. 2013;57:2448–57. Large multicenter retrospective cohort study demonstrates that embolization of large spontaneous portosystemic shunts is an efficacious and safe procedure for treatment of cirrhotics with chronic protracted or recurrent HE.

    Article  PubMed  Google Scholar 

  17. Singh S, Kamath PS, Andrews JC, et al. Embolization of spontaneous portosystemic shunts for management of severe persistent hepatic encephalopathy. Hepatology. 2014;59:735–6. This retrospective, single center study reiterates that embolization of large spontaneous portosystemic shunts is a safe technique for treatment of severe persistent hepatic encephalopathy.

    Article  PubMed  Google Scholar 

  18. Wright G, Noiret L, Olde Damink SW, et al. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int. 2011;31:163–75. Comprehensive review article providing details about inter-organ ammonia metabolism in health and liver failure. It also highlights important alternative ammonia detoxification pathways that may be targets for future therapy.

    Article  CAS  PubMed  Google Scholar 

  19. Lee B. Urea cycle disorders: Clinical features and diagnosis. Waltham, MA: Up to date, 2014. Detailed review, highlighting various biochemical tests for diagnosis of urea cycle disorders.

  20. Mock CM, Schwetschenau KH. Levocarnitine for valproic-acid-induced hyperammonemic encephalopathy. Am J Health Syst Pharm. 2012;69:35–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rigamonti A, Lauria G, Grimod G, et al. Valproate induced hyperammonemic encephalopathy successfully treated with levocarnitine. J Clin Neurosci. 2014;21:690–1.

    Article  PubMed  Google Scholar 

  22. Lewis C, Deshpande A, Tesar GE, et al. Valproate-induced hyperammonemic encephalopathy: a brief review. Curr Med Res Opin. 2012;28:1039–42. This article provides insights into the causes and mechanism of valproate induced hyperammonemic encephalopathy.

    Article  CAS  PubMed  Google Scholar 

  23. Yehya N, Saldarini CT, Koski ME, et al. Valproate-induced hyperammonemic encephalopathy. J Am Acad Child Adolesc Psychiatry. 2004;43:926–7.

    Article  PubMed  Google Scholar 

  24. Hamer HM, Knake S, Schomburg U, et al. Valproate-induced hyperammonemic encephalopathy in the presence of topiramate. Neurology. 2000;54:230–2.

    Article  CAS  PubMed  Google Scholar 

  25. Nott L, Price TJ, Pittman K, et al. Hyperammonemia encephalopathy: an important cause of neurological deterioration following chemotherapy. Leuk Lymphoma. 2007;48:1702–11.

    Article  CAS  PubMed  Google Scholar 

  26. Heitink-Polle KM, Prinsen BH, de Koning TJ, et al. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase. JIMD Rep. 2013;7:103–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Martinez-Lapiscina EH, Erro ME, Cabada T, et al. 5-Fluorouracil induced hyperammonemic encephalophathy: etiopathologic correlation. Can J Neurol Sci. 2012;39:553–4.

    Article  CAS  PubMed  Google Scholar 

  28. Hansen N. Drug-Induced Encephalopathy: Intech, 2012

  29. Vemuri MC, Indira K. Intestinal ammonia metabolism in ethanolic rats. Biochem Med Metab Biol. 1986;36:8–13.

    Article  CAS  PubMed  Google Scholar 

  30. Fenves A, Boland CR, Lepe R, et al. Fatal hyperammonemic encephalopathy after gastric bypass surgery. Am J Med. 2008;121:e1–2.

    Article  PubMed  Google Scholar 

  31. Albersen M, Joniau S, Van Poppel H, et al. Urea-splitting urinary tract infection contributing to hyperammonemic encephalopathy. Nat Clin Pract Urol. 2007;4:455–8.

    Article  PubMed  Google Scholar 

  32. Ullman MA, Haecker TA, Medani CR. Hyperammonemic encephalopathy and urinary obstruction. N Engl J Med. 1981;304:1546.

    CAS  PubMed  Google Scholar 

  33. Schutze GE, Edwards MS, Adham BI, et al. Hyperammonemia and neonatal herpes simplex pneumonitis. Pediatr Infect Dis J. 1990;9:749–50.

    Article  CAS  PubMed  Google Scholar 

  34. Liu KT, Yang SC, Yeh IJ, et al. Transient hyperammonemia associated with postictal state in generalized convulsion. Kaohsiung J Med Sci. 2011;27:453–6.

    Article  CAS  PubMed  Google Scholar 

  35. Hung TY, Chen CC, Wang TL, et al. Transient hyperammonemia in seizures: a prospective study. Epilepsia. 2011;52:2043–9.

    Article  PubMed  Google Scholar 

  36. Nakamura K, Yamane K, Shinohara K, et al. Hyperammonemia in idiopathic epileptic seizure. Am J Emerg Med. 2013;31:1486–9. Prospective observational study showing that elevated ammonia level in patients with seizures are transient, do not affect outcome and should not be treated.

    Article  PubMed  Google Scholar 

  37. Fuhrmann V, Jager B, Zubkova A, et al. Hypoxic hepatitis—epidemiology, pathophysiology and clinical management. Wien Klin Wochenschr. 2010;122:129–39.

    Article  PubMed  Google Scholar 

  38. Drolz A, Jager B, Wewalka M, et al. Clinical impact of arterial ammonia levels in ICU patients with different liver diseases. Intensive Care Med. 2013;39:1227–37.

    Article  CAS  PubMed  Google Scholar 

  39. Shinozaki K, Oda S, Sadahiro T, et al. Blood ammonia and lactate levels on hospital arrival as a predictive biomarker in patients with out-of-hospital cardiac arrest. Resuscitation. 2011;82:404–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cho YM, Lim YS, Yang HJ, et al. Blood ammonia is a predictive biomarker of neurologic outcome in cardiac arrest patients treated with therapeutic hypothermia. Am J Emerg Med. 2012;30:1395–401.

    Article  PubMed  Google Scholar 

  41. Kasai A, Nagao K, Kikushima K, et al. Prognostic value of venous blood ammonia in patients with out-of-hospital cardiac arrest. Circ J. 2012;76:891–9. Large prospective study of patients with out-of-hospital cardiac arrest reveals that elevated venous blood ammonia is associated with a worse neurological outcome.

    Article  CAS  PubMed  Google Scholar 

  42. Lin CH, Chi CH, Wu SY, et al. Prognostic values of blood ammonia and partial pressure of ammonia on hospital arrival in out-of-hospital cardiac arrests. Am J Emerg Med. 2013;31:8–15.

    Article  PubMed  Google Scholar 

  43. Bassini-Cameron A, Monteiro A, Gomes A, et al. Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Br J Sports Med. 2008;42:260–6.

    Article  CAS  PubMed  Google Scholar 

  44. Goncalves LC, Bessa A, Freitas-Dias R, et al. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. J Int Soc Sports Nutr. 2012;9:30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Prado ES, de Rezende Neto JM, de Almeida RD, et al. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br J Nutr. 2011;105:1729–33.

    Article  CAS  PubMed  Google Scholar 

  46. Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol. 2010;91:200–19.

    Article  CAS  PubMed  Google Scholar 

  47. Felig DM, Brusilow SW, Boyer JL. Hyperammonemic coma due to parenteral nutrition in a woman with heterozygous ornithine transcarbamylase deficiency. Gastroenterology. 1995;109:282–4.

    Article  CAS  PubMed  Google Scholar 

  48. McDougal WS. Metabolic complications of urinary intestinal diversion. J Urol. 1992;147:1199–208.

    CAS  PubMed  Google Scholar 

  49. Hawary A, Mukhtar K, Sinclair A, et al. Transurethral resection of the prostate syndrome: almost gone but not forgotten. J Endourol. 2009;23:2013–20.

    Article  PubMed  Google Scholar 

  50. Bichu P, Phadke G, Sangha H, et al. Postprostatectomy seizures: a case report. Hemodial Int. 2011;15 Suppl 1:S54–8.

    Article  PubMed  Google Scholar 

  51. Lora-Tamayo J, Palom X, Sarra J, et al. Multiple myeloma and hyperammonemic encephalopathy: review of 27 cases. Clin Lymphoma Myeloma. 2008;8:363–9.

    Article  PubMed  Google Scholar 

  52. Otsuki T, Yamada O, Sakaguchi H, et al. In vitro excess ammonia production in human myeloma cell lines. Leukemia. 1998;12:1149–58.

    Article  CAS  PubMed  Google Scholar 

  53. Ikewaki J, Ogata M, Imamura T, et al. Development of hyperammonemic encephalopathy in patients with multiple myeloma may be associated with the appearance of peripheral blood myeloma cells. Leuk Lymphoma. 2009;50:667–9.

    Article  PubMed  Google Scholar 

  54. Pham A, Reagan JL, Castillo JJ. Multiple myeloma-induced hyperammonemic encephalopathy: an entity associated with high in-patient mortality. Leuk Res. 2013;37:1229–32.

    Article  CAS  PubMed  Google Scholar 

  55. Davies SM, Szabo E, Wagner JE, et al. Idiopathic hyperammonemia: a frequently lethal complication of bone marrow transplantation. Bone Marrow Transplant. 1996;17:1119–25.

    CAS  PubMed  Google Scholar 

  56. Hocker S, Rabinstein AA, Wijdicks EF. Pearls & oy-sters: status epilepticus from hyperammonemia after lung transplant. Neurology. 2011;77:e54–6.

    Article  PubMed  Google Scholar 

  57. Chen YH, Chiou TJ, Hsu YN, et al. Idiopathic hyperammonemia after chemotherapy with vinorelbine, topotecan, and cisplatin in a patient with acute lymphocytic leukemia. Hematol Oncol Stem Cell Ther. 2010;3:199–202.

    Article  CAS  PubMed  Google Scholar 

  58. Jaing TH, Lin JL, Lin YP, et al. Hyperammonemic encephalopathy after induction chemotherapy for acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2009;31:955–6.

    Article  PubMed  Google Scholar 

  59. Belay ED, Bresee JS, Holman RC, et al. Reye's syndrome in the United States from 1981 through 1997. N Engl J Med. 1999;340:1377–82.

    Article  CAS  PubMed  Google Scholar 

  60. Starko KM, Ray CG, Dominguez LB, et al. Reye's syndrome and salicylate use. Pediatrics. 1980;66:859–64.

    CAS  PubMed  Google Scholar 

  61. Pugliese A, Beltramo T, Torre D. Reye's and Reye's-like syndromes. Cell Biochem Funct. 2008;26:741–6.

    Article  CAS  PubMed  Google Scholar 

  62. Chang PF, Huang SF, Hwu WL, et al. Metabolic disorders mimicking Reye's syndrome. J Formos Med Assoc. 2000;99:295–9.

    CAS  PubMed  Google Scholar 

  63. Glasgow AM, Cotton RB, Dhiensiri K. Reye's syndrome. I. Blood ammonia and consideration of the nonhistologic diagnosis. Am J Dis Child. 1972;124:827–33.

    Article  CAS  PubMed  Google Scholar 

  64. DeLong GR, Glick TH. Ammonia metabolism in Reye syndrome and the effect of citrulline. Ann Neurol. 1982;11:53–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lemberg A, Fernandez MA, Coll C, et al. Reyes's syndrome, encephalopathy, hyperammonemia and acetyl salicylic acid ingestion in a city hospital of Buenos Aires, Argentina. Curr Drug Saf. 2009;4:17–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sumit Kumar, MD MRCP and Sumeet K Asrani, MD MSc declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeet K. Asrani.

Additional information

This article is part of the Topical Collection on Management of the Cirrhotic Patient

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Asrani, S.K. Non-cirrhotic Hyperammonemia—When High Ammonia Is not Always from Cirrhosis. Curr Hepatology Rep 14, 25–31 (2015). https://doi.org/10.1007/s11901-015-0252-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-015-0252-z

Keywords

Navigation