Skip to main content

Advertisement

Log in

Mechanisms of Fibrosis in Steatohepatitis

  • Fatty Liver Disease (SA Harrison and J George, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Nonalcoholic steatohepatitis (NASH) is a frequent cause of cirrhosis and may lead to liver-related mortality. In Western countries, NASH is the most common liver disease and may progress to advanced fibrosis or cirrhosis in a significant portion of cases. Moreover, NASH, even in the absence of cirrhosis, is associated with the development of hepatocellular carcinoma. An increased risk of cardiovascular events and/or diabetes represents another major problem in these patients. In this review, we discuss recent data on the basic mechanisms leading to the development of fibrosis in nonalcoholic steatohepatitis, in particular those which may identify novel approaches to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bataller R, Rombouts K, Altamirano J, Marra F. Fibrosis in alcoholic and nonalcoholic steatohepatitis. Best Pract Res Clin Gastroenterol. 2011;25:231–44.

    Article  CAS  PubMed  Google Scholar 

  2. Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42:641–9.

    Article  PubMed  Google Scholar 

  3. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330–44.

    Article  CAS  PubMed  Google Scholar 

  4. Rosselli M, Lotersztajn S, Vizzutti F, Arena U, Pinzani M, Marra F. The metabolic syndrome and chronic liver disease. Curr Pharm Des. 2013, (in press)

  5. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823. An elegant study using cell tracking to identify fibrogenic cells in different experimental models.

    Article  PubMed  Google Scholar 

  6. Marra F, Lotersztajn S. Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des. 2013;19:5250–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Anstee QM, Daly AK, Day CP. Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis. 2011;31:128–46.

    Article  CAS  PubMed  Google Scholar 

  8. Daly AK, Ballestri S, Carulli L, Loria P, Day CP. Genetic determinants of susceptibility and severity in nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2011;5:253–63.

    Article  CAS  PubMed  Google Scholar 

  9. Ballestri S, Day CP, Daly AK. Polymorphism in the farnesyl diphosphate farnesyl transferase 1 gene and nonalcoholic fatty liver disease severity. Gastroenterology. 2011;140:1694–5.

    Article  PubMed  Google Scholar 

  10. Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E, et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59:267–73.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Serri A, Anstee QM, Valenti L, Nobili V, Leathart JB, Dongiovanni P, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol. 2012;56:448–54.

    Article  CAS  PubMed  Google Scholar 

  12. Ratziu V, Lalazar A, Wong L, Dang Q, Collins C, Shaulian E, et al. Zf9, a Kruppel-like transcription factor up-regulated in vivo during early hepatic fibrosis. Proc Natl Acad Sci U S A. 1998;95:9500–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Miele L, Beale G, Patman G, Nobili V, Leathart J, Grieco A, et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135:282–91 e1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bechmann LP, Gastaldelli A, Vetter D, Patman GL, Pascoe L, Hannivoort RA, et al. Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology. 2012;55:1083–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122:2884–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Valenti L, Motta BM, Alisi A, Sartorelli R, Buonaiuto G, Dongiovanni P, et al. LPIN1 rs13412852 polymorphism in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2012;54:588–93.

    Article  CAS  PubMed  Google Scholar 

  17. Dongiovanni P, Anstee QM, Valenti L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des. 2013;19:5219–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–87. A comprehensive analtyysis of epigenetic factors possibly regulating the development of NASH in humans.

    Article  CAS  PubMed  Google Scholar 

  19. Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuelsson AM, Pombo J, Maragkoudaki X, et al. Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology. 2013;58:128–38.

    Article  CAS  PubMed  Google Scholar 

  20. Leung C, Herath CB, Jia Z, Goodwin M, Mak KY, Watt MJ, et al. Dietary glycotoxins exacerbate progression of experimental fatty liver disease. J Hepatol. 2013. doi:10.1016/j.jhep.2013.11.033.

    Google Scholar 

  21. Jiang JX, Chen X, Fukada H, Serizawa N, Devaraj S, Torok NJ. Advanced glycation endproducts induce fibrogenic activity in nonalcoholic steatohepatitis by modulating TNF-alpha-converting enzyme activity in mice. Hepatology. 2013;58:1339–48.

    Article  PubMed  Google Scholar 

  22. Moran-Salvador E, Titos E, Rius B, Gonzalez-Periz A, Garcia-Alonso V, Lopez-Vicario C, et al. Cell-specific PPARgamma deficiency establishes anti-inflammatory and anti-fibrogenic properties for this nuclear receptor in non-parenchymal liver cells. J Hepatol. 2013;59:1045–53.

    Article  CAS  PubMed  Google Scholar 

  23. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 2013;145:574–82 e1. Clinical evidence for the effect of a FXR agonist in the treatment of NAFLD.

    Article  CAS  PubMed  Google Scholar 

  24. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58:1941–52. Proof-of-principle study assessing a novel strategy to ameliorate NASH via activation of nuclear receptors.

    Article  CAS  PubMed  Google Scholar 

  25. Watt MJ, Spriet LL. Triacylglycerol lipases and metabolic control: implications for health and disease. Am J Physiol Endocrinol Metab. 2010;299:E162–8.

    CAS  PubMed  Google Scholar 

  26. Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, Das SK, et al. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology. 2014;59:858–69.

    Google Scholar 

  27. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Marra F, Bertolani C. Adipokines in liver diseases. Hepatology. 2009;50:957–69.

    Article  CAS  PubMed  Google Scholar 

  29. Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.

    Article  CAS  PubMed  Google Scholar 

  30. Wanninger J, Neumeier M, Bauer S, Weiss TS, Eisinger K, Walter R, et al. Adiponectin induces the transforming growth factor decoy receptor BAMBI in human hepatocytes. FEBS Lett. 2011;585:1338–44.

    Article  CAS  PubMed  Google Scholar 

  31. Handy JA, Fu PP, Kumar P, Mells JE, Sharma S, Saxena NK, et al. Adiponectin inhibits leptin signalling via multiple mechanisms to exert protective effects against hepatic fibrosis. Biochem J. 2011;440:385–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dong ZX, Su L, Brymora J, Bird C, Xie Q, George J, et al. Resistin mediates the hepatic stellate cell phenotype. World J Gastroenterol. 2013;19:4475–85.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85. A seminal study defining the role of the microbiota in the pathogenesis of NASH, through its interaction with the inflammasome system.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 2012;56:118–29.

    Article  CAS  PubMed  Google Scholar 

  36. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56:1283–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, et al. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury. Hepatology. 2013. doi:10.1002/hep.26695. Diet-induced obesity modifies the microbiota in a way that favors the development of fibrosis.

    PubMed  Google Scholar 

  38. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54:133–44.

    Article  CAS  PubMed  Google Scholar 

  39. Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT, George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56:944–51.

    Article  CAS  PubMed  Google Scholar 

  40. Provenzano A, Milani S, F V, Delogu W, Navari N, Novo E, et al. n-3 polyunsaturated fatty acids worsen inflammation and fibrosis in experimental nonalcoholic steatohepatitis. Liver Int. 2014;in press.

  41. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141:1393–403. 403 e1-5.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Van Rooyen DM, Gan LT, Yeh MM, Haigh WG, Larter CZ, Ioannou G, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol. 2013;59:144–52. Interference with cholesterol metabolism ameliorates NASH is a model associated with the metabolic syndrome.

    Article  PubMed  Google Scholar 

  43. Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology. 2013;57:81–92.

    Article  CAS  PubMed  Google Scholar 

  44. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 2014;59:154–69. Free cholesterol contributes to fibrosis acting directly on fibrogenic cells.

    Article  CAS  PubMed  Google Scholar 

  45. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58:693–700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Yilmaz Y. Review article: fructose in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;35:1135–44.

    Article  CAS  PubMed  Google Scholar 

  47. Song M, Schuschke DA, Zhou Z, Chen T, Pierce Jr WM, Wang R, et al. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol. 2012;56:433–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhang C, Chen X, Zhu RM, Zhang Y, Yu T, Wang H, et al. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett. 2012;212:229–40.

    Article  CAS  PubMed  Google Scholar 

  49. Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58:1632–43.

    Article  CAS  PubMed  Google Scholar 

  50. Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology. 2012;55:429–36. Beneficial effects of coffee on NASH-associated fibrosis.

    Article  CAS  PubMed  Google Scholar 

  51. Anty R, Marjoux S, Iannelli A, Patouraux S, Schneck AS, Bonnafous S, et al. Regular coffee but not espresso drinking is protective against fibrosis in a cohort mainly composed of morbidly obese European women with NAFLD undergoing bariatric surgery. J Hepatol. 2012;57:1090–6.

    Article  CAS  PubMed  Google Scholar 

  52. Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–72.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE. 2011;6:e25269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1310–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Galastri S, Zamara E, Milani S, Novo E, Provenzano A, Delogu W, et al. Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis. Clin Sci (Lond). 2012;123:459–71.

    Article  CAS  Google Scholar 

  56. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61:416–26. The two papers above indicate that interference with the chemokine system, particularly with CCL2, modulates the NASH phenotype.

    Article  CAS  PubMed  Google Scholar 

  57. Itoh M, Kato H, Suganami T, Konuma K, Marumoto Y, Terai S, et al. Hepatic crown-like structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS One. 2013;8:e82163.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Aparicio-Vergara M, Hommelberg PP, Schreurs M, Gruben N, Stienstra R, Shiri-Sverdlov R, et al. Tumor necrosis factor receptor 1 gain-of-function mutation aggravates nonalcoholic fatty liver disease but does not cause insulin resistance in a murine model. Hepatology. 2013;57:566–76.

    Article  CAS  PubMed  Google Scholar 

  59. Bieghs V, van Gorp PJ, Walenbergh SM, Gijbels MJ, Verheyen F, Buurman WA, et al. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatology. 2012;56:894–903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58:589–602.

    Article  CAS  PubMed  Google Scholar 

  61. Jiao J, Sastre D, Fiel MI, Lee UE, Ghiassi-Nejad Z, Ginhoux F, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012;55:244–55. These two papers show that dendritic cells contribute to reduce fibrosis development and to favor its resolution.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology. 2012;143:1158–72. An excellent review on the novel acquisitions on the role of the inflammasome system and its activation independently of infection.

    Article  CAS  PubMed  Google Scholar 

  63. Ye D, Li FY, Lam KS, Li H, Jia W, Wang Y, et al. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut. 2012;61:1058–67.

    Article  CAS  PubMed  Google Scholar 

  64. Wang FP, Li L, Li J, Wang JY, Wang LY, Jiang W. High mobility group box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-dependent signal pathways of PI3K/Akt and JNK. PLoS One. 2013;8:e64373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology. 2013;57:577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481:278–86.

    Article  CAS  PubMed  Google Scholar 

  67. Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest. 2012;92:713–23.

    Article  CAS  PubMed  Google Scholar 

  68. Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2013. doi:10.1002/hep.26592. Novel approach to identify the detrimental role of inflammassome activation within the liver.

    Google Scholar 

  69. Nakatsu Y, Otani Y, Sakoda H, Zhang J, Guo Y, Okubo H, et al. Role of Pin1 protein in the pathogenesis of nonalcoholic steatohepatitis in a rodent model. J Biol Chem. 2012;287:44526–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 2012;61:1323–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Sutti S, Jindal A, Locatelli I, Vacchiano M, Gigliotti L, Bozzola C, et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology. 2013. doi:10.1002/hep.26749.

    Google Scholar 

  72. Nagano J, Shimizu M, Hara T, Shirakami Y, Kochi T, Nakamura N, et al. Effects of indoleamine 2,3-dioxygenase deficiency on high-fat diet-induced hepatic inflammation. PLoS One. 2013;8:e73404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Mallat A, Teixeira-Clerc F, Deveaux V, Manin S, Lotersztajn S. The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings. Br J Pharmacol. 2011;163:1432–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012;16:167–79. Interference with periferal cannabinoid receptors may ameliorate metabolic alterations without inducing side effects on the central nervous system.

    Article  CAS  PubMed  Google Scholar 

  75. Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology. 2014;59:296–306.

    Article  CAS  PubMed  Google Scholar 

  76. Rossi F, Bellini G, Alisi A, Alterio A, Maione S, Perrone L, et al. Cannabinoid receptor type 2 functional variant influences liver damage in children with non-alcoholic fatty liver disease. PLoS One. 2012;7:e42259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Guicciardi ME, Gores GJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis. 2010;30:402–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wang K, Lin B, Brems JJ, Gamelli RL. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway. Apoptosis. 2013;18:566–77.

    Article  CAS  PubMed  Google Scholar 

  79. Hatting M, Zhao G, Schumacher F, Sellge G, Al Masaoudi M, Gabetaler N, et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology. 2013;57:2189–201.

    Article  CAS  PubMed  Google Scholar 

  80. Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology. 2014;59:483–95.

    Article  CAS  PubMed  Google Scholar 

  81. Pagliassotti MJ. Endoplasmic reticulum stress in nonalcoholic fatty liver disease. Annu Rev Nutr. 2012;32:17–33.

    Article  CAS  PubMed  Google Scholar 

  82. De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, et al. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int. 2012;32:1574–84.

    Article  PubMed  Google Scholar 

  83. Chen A, Tang Y, Davis V, Hsu FF, Kennedy SM, Song H, et al. Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease. Hepatology. 2013;57:2202–12.

    Article  CAS  PubMed  Google Scholar 

  84. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142:938–46. Demonstration that activation of autophagic flux in stellate cells is involved in the fibrogenic process.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Thoen LF, Guimaraes EL, Dolle L, Mannaerts I, Najimi M, Sokal E, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol. 2011;55:1353–60.

    Article  CAS  PubMed  Google Scholar 

  86. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69.

    Article  CAS  PubMed  Google Scholar 

  87. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, et al. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology. 2012;56:912–21.

    Article  CAS  PubMed  Google Scholar 

  88. Shimozono R, Asaoka Y, Yoshizawa Y, Aoki T, Noda H, Yamada M, et al. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol. 2013;84:62–70.

    Article  CAS  PubMed  Google Scholar 

  89. Vizzutti F, Provenzano A, Galastri S, Milani S, Delogu W, Novo E, et al. Curcumin limits the fibrogenic evolution of experimental steatohepatitis. Lab Invest. 2010;90:104–15.

    Article  CAS  PubMed  Google Scholar 

  90. Loguercio C, Andreone P, Brisc C, Brisc MC, Bugianesi E, Chiaramonte M, et al. Silybin combined with phosphatidylcholine and vitamin E in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Free Radic Biol Med. 2012;52:1658–65.

    Article  CAS  PubMed  Google Scholar 

  91. Zou X, Yan C, Shi Y, Cao K, Xu J, Wang X, et al. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid Redox Signal. 2014. doi:10.1089/ars.2013.5538

Download references

Acknowledgments

Work on nonalcoholic steatohepatitis in Dr. Marra’s laboratory is supported by grants from

MIUR [PRIN and FIRB projects], the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement no. HEALTH-F2-2009-241762 for the project FLIP, and the Fondazione CARIPLO.

Compliance with Ethics Guidelines

Conflict of Interest

Fabio Marra reports grants from ViiV Healthcare, personal fees from Abbott and Bayer, and non-financial support from Gilead, outside the submitted work. Elisa Vivoli and Angela Provenzano declare they have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Marra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marra, F., Provenzano, A. & Vivoli, E. Mechanisms of Fibrosis in Steatohepatitis. Curr Hepatology Rep 13, 142–150 (2014). https://doi.org/10.1007/s11901-014-0228-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-014-0228-4

Keywords

Navigation