Skip to main content

Advertisement

Log in

New Paradigms in the Histopathology of NAFLD

  • Fatty Liver Disease (SA Harrison and J George, Section editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a rapidly growing global health problem. It can be separated histologically into two broad groups: steatosis, which usually follows a benign clinical course and non-alcoholic steatohepatitis (NASH) that typically has hepatocyte ballooning, necroinflammatory activity and can progress to fibrosis and cirrhosis. More recently the histological spectrum has expanded with the recognition of a paediatric pattern of NASH that has portal-based inflammation and fibrosis without ballooning. An overlap pattern is also described. There is increasing interest in the portal changes of NASH as these correlate with the progression of fibrosis. Disease-associated hepatocyte senescence appears to trigger an alternative regenerative pathway and the development of a periportal ductular reaction (DR), which in turn may have a role in progressive fibrogenesis. Portal inflammation, particularly in association with the DR, is an area of recent study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CRN-NAS:

NASH Clinical Research Network NAFLD Activity Score

DR:

ductular reaction

HPC:

hepatic progenitor cell

MMP:

matrix metalloproteinase

NAFLD:

non-alcoholic fatty liver disease

NASH:

non-alcoholic steatohepatitis

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94(9):2467–74.

    Article  CAS  PubMed  Google Scholar 

  2. Hashimoto E, Tokushige K, Farrell GC. Histological features of non-alcoholic fatty liver disease: what is important? J Gastroenterol Hepatol. 2012;27(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  3. Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(4):195–203.

    Article  PubMed  Google Scholar 

  4. Bataller R, Rombouts K, Altamirano J, Marra F. Fibrosis in alcoholic and nonalcoholic steatohepatitis. Best Pract Res Clin Gastroenterol. 2011;25(2):231–44.

    Article  CAS  PubMed  Google Scholar 

  5. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31.

    Article  PubMed  Google Scholar 

  6. Pagadala MR, McCullough AJ. The relevance of liver histology to predicting clinically meaningful outcomes in nonalcoholic steatohepatitis. Clin Liver Dis. 2012;16(3):487–504.

    Article  PubMed  Google Scholar 

  7. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  PubMed  Google Scholar 

  8. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9.

    Article  CAS  PubMed  Google Scholar 

  9. Guy CD, Suzuki A, Burchette JL, Brunt EM, Abdelmalek MF, Cardona D, et al. Costaining for keratins 8/18 plus ubiquitin improves detection of hepatocyte injury in nonalcoholic fatty liver disease. Hum Pathology. 2012;43(6):790–800.

    Article  CAS  Google Scholar 

  10. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol. 2008;48(5):821–8.

    Article  CAS  PubMed  Google Scholar 

  11. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774–88.

    Article  PubMed  Google Scholar 

  12. Ioannou GN, Haigh WG, Thorning D, Savard C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res. 2013;54(5):1326–34. This paper describes the presence of crystalline cholesterol in areas of hepatocyte injury and inflammation, supporting a role for free cholesterol in NASH pathogenesis.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Neuschwander-Tetri BA, Wang DQ. Excess cholesterol and fat in the diet: a dangerous liaison for energy expenditure and the liver. Hepatology. 2013;57(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  14. Savard C, Tartaglione EV, Kuver R, Haigh WG, Farrell GC, Subramanian S, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology. 2013;57(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  15. Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, et al. From Mallory to Mallory-Denk bodies: what, how and why? Exp Cell Res. 2007;313(10):2033–49.

    Article  CAS  PubMed  Google Scholar 

  16. Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z, Agrawal R, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology. 2011;53(6):1874–82.

    Article  PubMed  Google Scholar 

  17. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55.

    Article  CAS  PubMed  Google Scholar 

  18. Kremer M, Thomas E, Milton RJ, Perry AW, van Rooijen N, Wheeler MD, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Xu CF, Yu CH, Li YM, Xu L, Du J, Shen Z. Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease. World J Gastroenterol. 2007;13(33):4504–8.

    PubMed  Google Scholar 

  20. Adler M, Taylor S, Okebugwu K, Yee H, Fielding C, Fielding G, et al. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J Gastroenterol. 2011;17(13):1725–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, et al. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 2012;61(9):1323–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Henning JR, Graffeo CS, Rehman A, Fallon NC, Zambirinis CP, Ochi A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58(2):589–602.

    Article  CAS  PubMed  Google Scholar 

  23. Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, et al. The portal inflammatory infiltrate and ductular reaction in human non-alcoholic fatty liver disease. Hepatology. 2013 Nov 20. doi:10.1002/hep.26937.

  24. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.

    Article  CAS  PubMed  Google Scholar 

  25. Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, Bhathal PS, et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology. 2007;133(1):80–90.

    Article  PubMed  Google Scholar 

  26. Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE, Lavine JE, et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-Clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology. 2009;49(3):809–20.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hano H, Takasaki S, Kobayashi H, Koyama T, Lu T, Nagatsuma K. In the non-cirrhotic stage of nonalcoholic steatohepatitis, angioarchitecture of portal veins and lobular architecture are maintained. Virchows Archiv. 2013;462(5):533–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Skoien R, Richardson MM, Jonsson JR, Powell EE, Brunt EM, Neuschwander-Tetri BA, et al. Heterogeneity of fibrosis patterns in non-alcoholic fatty liver disease supports the presence of multiple fibrogenic pathways. Liver Int. 2013;33(4):624–32.

    Article  CAS  PubMed  Google Scholar 

  29. Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42(3):641–9.

    Article  PubMed  Google Scholar 

  30. Nobili V, Marcellini M, Devito R, Ciampalini P, Piemonte F, Comparcola D, et al. NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice. Hepatology. 2006;44(2):458–65.

    Article  PubMed  Google Scholar 

  31. Patton HM, Lavine JE, Van Natta ML, Schwimmer JB, Kleiner D, Molleston J, et al. Clinical correlates of histopathology in pediatric nonalcoholic steatohepatitis. Gastroenterology. 2008;135(6):1961–71.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nobili V, de Ville de Goyet J. Pediatric post-transplant metabolic syndrome: new clouds on the horizon. Pediatr Transplant. 2013;17(3):216–23.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JK, Chon NR, Lim HC, Lee KS, Han KH, Chon CY, et al. Transitional features of histologic type of non-alcoholic fatty liver disease in Korean young men. J Gastroenterol Hepatol. 2012;27(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  34. Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, NCR Network. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology. 2012;56(5):1751–9.

    Article  PubMed  Google Scholar 

  36. Alkhouri N, De Vito R, Alisi A, Yerian L, Lopez R, Feldstein AE, et al. Development and validation of a new histological score for pediatric non-alcoholic fatty liver disease. J Hepatol. 2012;57(6):1312–8.

    Article  PubMed  Google Scholar 

  37. Ekstedt M, Franzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865–73.

    Article  CAS  PubMed  Google Scholar 

  38. Pais R, Charlotte F, Fedchuk L, Bedossa P, Lebray P, Poynard T, et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol. 2013;59(3):550–6. In a relatively small cohort, the development of progressive disease is described in some patients who did not have NASH in their first biopsy. Although it needs to be confirmed, in an era when many patients will have almost lifelong NAFLD it raises important issues of following patients with steatosis.

    Article  CAS  PubMed  Google Scholar 

  39. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129(1):113–21.

    Article  PubMed  Google Scholar 

  40. Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol. 2009;51(2):371–9.

    Article  CAS  PubMed  Google Scholar 

  41. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis: a follow-up study of forty-two patients for up to 21 years. Hepatology. 1990;11(1):74–80.

    Article  PubMed  Google Scholar 

  42. Caldwell SH, Lee VD, Kleiner DE, Al-Osaimi AM, Argo CK, Northup PG, et al. NASH and cryptogenic cirrhosis: a histological analysis. Ann Hepatol. 2009;8(4):346–52.

    PubMed  Google Scholar 

  43. van der Poorten D, Samer CF, Ramezani-Moghadam M, Coulter S, Kacevska M, Schrijnders D, et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause? Hepatology. 2013;57(6):2180–8. Increased levels of adiponectin are suggested to explain the loss of histological changes of NASH in some patients with (cryptogenic) cirrhosis.

    Article  PubMed  Google Scholar 

  44. Dixon JB, Bhathal PS, Hughes NR, O'Brien PE. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology. 2004;39(6):1647–54.

    Article  PubMed  Google Scholar 

  45. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, Oliver D, Bacon BR. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology. 2003;38(4):1008–17.

    Article  CAS  PubMed  Google Scholar 

  46. Nobili V, Svegliati-Baroni G, Alisi A, Miele L, Valenti L, Vajro P. A 360-degree overview of paediatric NAFLD: recent insights. J Hepatol. 2013;58(6):1218–29.

    Article  PubMed  Google Scholar 

  47. Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction and progenitor cell expansion. Gastroenterology. 2014;146(2):349–56.

    Google Scholar 

  48. Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology. 2011;54(5):1853–63.

    Article  PubMed  Google Scholar 

  49. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6):1739–45.

    Article  PubMed  Google Scholar 

  50. Isse K, Lesniak A, Grama K, Maier J, Specht S, Castillo-Rama M, et al. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells. Hepatology. 2013;57(4):1632–43. Sophisticated staining and computerised imaging techniques were used to demonstrate heterogeneity of putative hepatic progenitor cells in the liver stem cell niche.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Clouston AD, Powell EE, Walsh MJ, Richardson MM, Demetris AJ, Jonsson JR. Fibrosis correlates with a ductular reaction in hepatitis C: roles of impaired replication, progenitor cells and steatosis. Hepatology. 2005;41(4):809–18.

    Article  CAS  PubMed  Google Scholar 

  52. Wood MJ, Gadd VL, Powell LW, Ramm GA, Clouston AD. The ductular reaction in hereditary haemochromatosis: The link between hepatocyte senescence and fibrosis progression. Hepatology. 2014. doi:10.1002/hep.26706.

  53. Syal G, Fausther M, Dranoff JA. Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol. 2012;303(10):G1077–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Clouston AD, Jonsson JR, Powell EE. Hepatic progenitor cell-mediated regeneration and fibrosis: chicken or egg? Hepatology. 2009;49(5):1424–6.

    Article  CAS  PubMed  Google Scholar 

  55. Nobili V, Carpino G, Alisi A, Franchitto A, Alpini G, De Vito R, et al. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology. 2012;56(6):2142–53. Suggests a relationship between the ductular reaction and fibrosis in paediatric NASH, similar to an earlier study in adults.

    Article  CAS  PubMed  Google Scholar 

  56. Wanless IR, Shiota K. The pathogenesis of nonalcoholic steatohepatitis and other fatty liver diseases: a four-step model including the role of lipid release and hepatic venular obstruction in the progression to cirrhosis. Sem Liver Dis. 2004;24(1):99–106.

    Google Scholar 

  57. De Vito R, Alisi A, Masotti A, Ceccarelli S, Panera N, Citti A, et al. Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease. Int J Mol Med. 2012;30(1):49–56.

    PubMed  Google Scholar 

  58. Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kupffer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J Biol Chem. 2012;287(48):40161–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61(3):416–26.

    Article  CAS  PubMed  Google Scholar 

  60. Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18(4):572–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Gadd VL, Melino M, Roy S, Horsfall L, O'Rourke P, Williams MR, et al. Portal, but not lobular, macrophages express matrix metalloproteinase-9: association with the ductular reaction and fibrosis in chronic hepatitis C. Liver Int. 2013;33(4):569–79.

    Article  CAS  PubMed  Google Scholar 

  63. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Inv. 2005;115(1):56–65.

    Article  CAS  Google Scholar 

  64. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(46):E3186–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Theise ND, Kuwahara R. The tissue biology of ductular reactions in human chronic liver disease. Gastroenterology. 2007;133(1):350–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Health and Medical Research Council of Australia and The Princess Alexandra Hospital Foundation.

Compliance with Ethics Guidelines

Conflict of Interest

Andrew D. Clouston, Victoria L. Gadd, Katharine Irvine, and Elizabeth E. Powell declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Clouston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clouston, A.D., Gadd, V.L., Irvine, K.M. et al. New Paradigms in the Histopathology of NAFLD. Curr Hepatology Rep 13, 81–87 (2014). https://doi.org/10.1007/s11901-014-0214-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-014-0214-x

Keywords

Navigation