Skip to main content

Advertisement

Log in

Monitoring BCR-ABL in the treatment of chronic myeloid leukemia by polymerase chain reaction

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The sensitive detection of minimal residual disease by the polymerase chain reaction (PCR) has revolutionized our ability to follow treatment response and predict relapse. Examples of how the detection of minimal residual disease can drive clinical research are best found in chronic myeloid leukemia (CML). The use of PCR to detect the BCR-ABL chimeric transcript in CML has been found to predict relapse in the transplant setting, and more recently, has been found in trials of imatinib to be a strong measure in predicting progression-free survival. In addition, clinical trials are now under way using the quantitative assessment of BCR-ABL as a surrogate outcome marker, potentially reducing the time and cost of clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hansen JA, Gooley TA, Martin PJ, et al.: Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 1998, 338:962–968.

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien SG, Guilhot F, Larson R A, et al.; IRIS Investigators: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003, 348:994–1004. The landmark IRIS trial randomized 1106 patients to receive imatinib or interferon and Ara-C and documented the impressive cytogenetic results of imatinib: complete cytogenetic response of 76.2% for imatinib versus 14.5% in the interferon/Ara-C arm.

    Article  PubMed  CAS  Google Scholar 

  3. Mauro MJ, Deininger MW: Chronic myeloid leukemia in 2006: a perspective. Haematologica 2006, 91:152–158.

    PubMed  CAS  Google Scholar 

  4. Druker BJ, O’Brien SG, Cortes J, Radich J: Chronic myelogenous leukemia. Hematology (Am Soc Hematol Educ Program) 2002, 111–135.

  5. Talpaz M, Silver RT, Druker BJ, et al.: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002, 99:1928–1937.

    Article  PubMed  CAS  Google Scholar 

  6. Sawyers CL, Hochhaus A, Feldman E, et al.: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002, 99:3530–3539.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Neriah Y, Daley GQ, Mes-Masson AM, et al.: The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986, 233:212–214.

    Article  PubMed  CAS  Google Scholar 

  8. Melo JV: The molecular biology of chronic myeloid leukaemia [review]. Leukemia 1996, 10:751–756.

    PubMed  CAS  Google Scholar 

  9. Shepherd P, Suffolk R, Halsey J, Allan N: Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br J Haematol 1995, 89:546–554.

    Article  PubMed  CAS  Google Scholar 

  10. Faderl S, Talpaz M, Estrov Z, et al.: The biology of chronic myeloid leukemia. N Engl J Med 1999, 341:164–172.

    Article  PubMed  CAS  Google Scholar 

  11. Wang JY: Regulation of cell death by the Abl tyrosine kinase. Oncogene 2000, 19:5643–5650.

    Article  PubMed  CAS  Google Scholar 

  12. Melo JV, Deininger MW: Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation [review]. Hematol Oncol Clin North Am 2004, 18:545–568.

    Article  PubMed  Google Scholar 

  13. Hook EB: Exclusion of chromosomal mosaicism: tables of 90%, 95% and 99% confidence limits and comments on use. Am J Hum Genet 1977, 29:94–97.

    PubMed  CAS  Google Scholar 

  14. Arthur CK, Apperley JF, Guo AP, et al.: Cytogenetic events after bone marrow transplantation for chronic myeloid leukemia in chronic phase. Blood 1988, 71:1179–1186.

    PubMed  CAS  Google Scholar 

  15. Seong DC, Kantarjian HM, Ro JY, et al.: Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosome-positive cells in patients with chronic myelogenous leukemia during treatment. Blood 1995, 86:2343–2349.

    PubMed  CAS  Google Scholar 

  16. Engel H, Drach J, Keyhani A, et al.: Quantitation of minimal residual disease in acute myelogenous leukemia and myelodysplastic syndromes in complete remission by molecular cytogenetics of progenitor cells. Leukemia 1999, 13:568–577.

    Article  PubMed  CAS  Google Scholar 

  17. Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Res 1996, 6:986–994.

    Article  PubMed  CAS  Google Scholar 

  18. Emig M, Saussele S, Wittor H, et al.: Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 1999, 13:1825–1832.

    Article  PubMed  CAS  Google Scholar 

  19. Radich JP, Gehly G, Gooley T, et al.: Polymerase chain reaction detection of BCR/ABL fusion transcript after allogeneic marrow transplantation for chronic myeloid leukemia: results and implications in 346 patients. Blood 1995, 85:2632–2638. This is one of the largest studies addressing the role of qualitative PCR in predicting relapse after allogeneic transplant. The Kaplan-Meier estimate of relapse for patients testing PCR-positive at 6 to 12 months was 42%, versus 3% for PCR-negative patients.

    PubMed  CAS  Google Scholar 

  20. Radich JP, Gooley T, Bryant E, et al.: The significance of bcr-abl molecular detection in chronic myeloid leukemia patients "late," 18 months or more after transplantation. Blood 2001, 98:1701–1707.

    Article  PubMed  CAS  Google Scholar 

  21. Hughes T, Deininger M, Hochhaus A, et al.: Monitoring CML patients responding to treatment with tyrosine kinase inhibitors—review and recommendations for "harmonizing" current methodology for detecting BCRABL transcripts and kinase domain mutations and for expressing results. Blood 2006, Epub ahead of print. Given the importance of BCR-ABL testing in CML patients taking tyrosine kinase inhibitors, this consensus paper describes one of the first attempts to standardize and harmonize BCR-ABL testing methods between laboratories.

  22. Roth MS, Antin JH, Ash R, et al.: Prognostic significance of Philadelphia chromosome-positive cells detected by the polymerase chain reaction after allogeneic bone marrow transplant for chronic myelogenous leukemia. Blood 1992, 79:276–282.

    PubMed  CAS  Google Scholar 

  23. Hughes TP, Morgan GJ, Martiat P, Goldman JM: Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: role of polymerase chain reaction in predicting relapse. Blood 1991, 77:874–878.

    PubMed  CAS  Google Scholar 

  24. Mughal TI, Yong A, Szydlo RM, et al.: Molecular studies in patients with chronic myeloid leukaemia in remission 5 years after allogeneic stem cell transplant define the risk of subsequent relapse. Brit J Haematol 2001, 115:569–574.

    Article  CAS  Google Scholar 

  25. Pichert G, Roy D-C, Gonin R, et al.: Distinct patterns of minimal residual disease associated with graftversus-host disease after allogeneic bone marrow transplantation for chronic myelogenous leukemia. J Clin Oncol 1995, 13:1704–1713.

    PubMed  CAS  Google Scholar 

  26. Mackinnon S, Barnett L, Heller G: Polymerase chain reaction is highly predictive of relapse in patients following T cell-depleted allogeneic bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplant 1996, 17:643–647.

    PubMed  CAS  Google Scholar 

  27. Lin F, van Rhee F, Goldman JM, Cross NCP: Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood 1996, 87:4473–4478.

    PubMed  CAS  Google Scholar 

  28. Mensink E, van de Locht A, Schattenberg A, et al.: Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukemia patients using real-time quantitative RT-PCR. Brit J Haematol 1998, 102:768–774.

    Article  CAS  Google Scholar 

  29. Preudhomme C, Chams-Eddine L, Roumier C, et al.: Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using an in situ RT-PCR assay. Leukemia 1999, 13:818–823.

    Article  PubMed  CAS  Google Scholar 

  30. Olavarria E, Kanfer E, Szydlo R, et al.: Early detection of BCR-ABL transcripts by quantitative reverse transcriptase-polymerase chain reaction predicts outcome after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood 2001, 97:1560–1565.

    Article  PubMed  CAS  Google Scholar 

  31. Branford S, Hughes TP, Rudzki Z: Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Brit J Haematol 1999, 107:587–599.

    Article  CAS  Google Scholar 

  32. Sawyers CL, Timson L, Kawasaki ES, et al.: Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci U S A 1990, 87:563–567.

    Article  PubMed  CAS  Google Scholar 

  33. Costello RT, Kirk J, Gabert J: Value of PCR analysis for long term survivors after allogeneic bone marrow transplant for chronic myelogenous leukemia: a comparative study. Leuk Lymphoma 1996, 20:239–243.

    Article  PubMed  CAS  Google Scholar 

  34. van Rhee F, Cross NCP, Reid CDL, et al.: Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukemia. Bone Marrow Transplant 1994, 14:609–612.

    PubMed  Google Scholar 

  35. Kaeda J, O’Shea D, Szydlo RM, et al.: Serial measurement of transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood 2006, 107:4171–4176.

    Article  PubMed  CAS  Google Scholar 

  36. Hughes T, Kaeda J, Branford S, et al.: Molecular responses to imatinib (STI571) or interferon + Ara-C as initial therapy for CML; results in the IRIS study [abstract]. Blood (ASH Annual Meeting Abstracts) 2002, 100:93a-94a.

    Google Scholar 

  37. Goldman J, Hughes T, Radich J, et al.: Continuing reduction in level of residual disease after 4 years in patients with CML in chronic phase responding to first-line imatinib (IM) in the IRIS study [abstract]. Blood (ASH Annual Meeting Abstracts) 2005, 106:51a, Abstract 163.

    Google Scholar 

  38. Branford S, Rudzki Z, Harper A, et al.: Imatinib produces significantly superior molecular responses compared with interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia 2003, 17:2401–2409.

    Article  PubMed  CAS  Google Scholar 

  39. Muller MC, Gatterman N, Lahaye T, et al.: Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia 2003, 17:2392–2400.

    Article  PubMed  CAS  Google Scholar 

  40. Kantarjian H, Talpaz M, Cortes J, et al.: Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI517; Gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 2003, 9:160–166.

    PubMed  CAS  Google Scholar 

  41. Cortes J, Talpaz M, O’Brien S, et al.: Molecular responses in patients with chronic myelogenous leukemia in chronic phase treated with imatinib mesylate. Clin Cancer Res 2005, 11:3425–3432.

    Article  PubMed  CAS  Google Scholar 

  42. Marin D, Kaeda J, Szydlo R, et al.: Monitoring patients in complete cytogenetic remission after treatment of CML in chronic phase with imatinib: patterns of residual leukaemia and prognostic factors for cytogenetic relapse. Leukemia 2005, 19:507–512.

    PubMed  CAS  Google Scholar 

  43. Merx K, Muller MC, Kreil S, et al.: Early reduction of BCRABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 2002, 16:1579–1583.

    Article  PubMed  CAS  Google Scholar 

  44. Wang L, Pearson K, Ferguson JE, Clark RE: The early molecular response to imatinib predicts cytogenetic and clinical outcome in chronic myeloid leukaemia. Br J Haematol 2003, 120:990–999.

    Article  PubMed  CAS  Google Scholar 

  45. Shah NP, Nicoll JM, Nagar B, et al.: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002, 2:117–125.

    Article  PubMed  CAS  Google Scholar 

  46. Hochhaus A, Kreil S, Corbin A, et al.: Roots of clinical resistance to STI-571 cancer therapy. Science 2001, 293:2163.

    Article  PubMed  CAS  Google Scholar 

  47. Branford S, Rudzki Z, Walsh S, et al.: High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002, 99:3472–3475.

    Article  PubMed  CAS  Google Scholar 

  48. Branford S, Rudzki Z, Walsh S, et al.: Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003, 102:276–283. One of the first studies to correlate tyrosine kinase domain (TKD) point mutations in 144 patients with disease phase at time of imatinib initiation and with poor outcome on imatinib therapy. TKD point mutations were found in 33% of acceleratedphase patients, 22% of late-chronic-phase patients, and 0% of early-chronic-phase patients. Of 13 patients with mutations in the P-loop, 12 (92%) died, compared with only 3 (21%) of 14 patients with mutations outside the P-loop.

    Article  PubMed  CAS  Google Scholar 

  49. Branford S, Rudzki Z, Parkinson I, et al.: Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 2004, 104:2926–2932. BCR-ABL and Abl TKD point mutation status was assessed in 214 patients. A more than twofold rise in BCR-ABL copy number identified 34 (97%) of 35 patients with a mutation, compared with only 1 (0.6%) of 158 patients with stable or decreasing BCR-ABL copy numbers.

    Article  PubMed  CAS  Google Scholar 

  50. Soverini S, Martinelli G, Rosti G, et al.: ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol 2005, 23:4100–4109.

    Article  PubMed  CAS  Google Scholar 

  51. Radich JP, Dai H, Mao M, et al.: Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 2006, 103:2794–2799.

    Article  PubMed  CAS  Google Scholar 

  52. Andersen MK, Pedersen-Bjergaard J, Kjeldsen L, et al.: Clonal Ph-negative hematopoiesis in CML after therapy with imatinib mesylate is frequently characterized by trisomy 8. Leukemia 2002, 16:1390–1393.

    Article  PubMed  CAS  Google Scholar 

  53. Bumm T, Muller C, Al-Ali HK, et al.: Emergence of clonal cytogenetic abnormalities in Ph-cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 2003, 101:1941–1949.

    Article  PubMed  CAS  Google Scholar 

  54. O’Dwyer ME, Gatter KM, Loriaux M, et al.: Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 2003, 17:481–487.

    Article  PubMed  CAS  Google Scholar 

  55. Chee YL, Vickers MA, Stevenson D, et al.: Fatal myelodysplastic syndrome developing during therapy with imatinib mesylate and characterised by the emergence of complex Philadelphia negative clones. Leukemia 2003, 17:634–635.

    Article  PubMed  CAS  Google Scholar 

  56. O’Brien S, Berman E, Bhalla K, et al.: Chronic myelogenous leukemia. J Natl Compr Canc Netw 2005, 3:732–755.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald P. Radich MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oehler, V.G., Radich, J.P. Monitoring BCR-ABL in the treatment of chronic myeloid leukemia by polymerase chain reaction. Curr Hematol Malig Rep 1, 152–159 (2006). https://doi.org/10.1007/s11899-996-0003-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-996-0003-x

Keywords

Navigation