Skip to main content

Advertisement

Log in

CML Resistant to 2nd-Generation TKIs: Mechanisms, Next Steps, and New Directions

  • Chronic Myeloid Leukemias (V Oehler, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The clinical scenario for chronic myeloid leukemia patients rapidly changed after the introduction of tyrosine kinase inhibitors (TKIs). Second-generation TKIs as frontline treatment increased the rate of deep molecular responses without increasing the rate of overall survival. About 20% of patients experience resistance to these agents, needing alternative treatments. Here, we reviewed the possible mechanisms of resistance, available treatment, and new drugs developed to counteract and overcome resistance.

Recent Findings

Results of novel TKIs have been recently reported, especially for the setting of T315I mutated patients, such as olverembatinib and asciminib, or for patients who developed resistance due to other mutations, such as vodobatinib. Most of new TKIs are selected among compounds tested selective on ABL, therefore without possible off-target effects in the long term.

Summary

New potential treatments are on the horizon in the field of CML, able to rescue patients treated firstly with one or more second-generation TKIs. Results of ongoing trials and real-world evidence dataset will help us to identify the appropriate timing of intervention and to select appropriate candidate to these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34(20):2333–40. DASISION trial result last follow-up.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. ENESTnd trial result 5-year follow-up.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018;36(3):231–7.

    Article  CAS  PubMed  Google Scholar 

  4. Hochhaus A, Rosti G, Cross NC, et al. Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study. Leukemia. 2016;30(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  5. Breccia M, Colafigli G, Molica M, et al. Timing and deepness of response to tyrosine kinase inhibitors as a measure of potential treatment discontinuation in chronic myeloid leukemia patients managed in the real-life. Am J Hematol. 2017;92(12):E668–70.

    Article  PubMed  Google Scholar 

  6. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European countries. Leukemia. 2015;29(6):1336–43.

    Article  CAS  PubMed  Google Scholar 

  7. Breccia M, Olimpieri PP, Olimpieri O, et al. AIFA’s Monitoring Registries Group. How many chronic myeloid leukemia patients who started a frontline second-generation tyrosine kinase inhibitor have to switch to a second-line treatment? A retrospective analysis from the monitoring registries of the Italian medicines agency (AIFA). Cancer Med. 2020;9(12):4160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eghtedar A, Kantarjian H, Jabbour E, et al. Outcome after failure of second generation tyrosine kinase inhibitors treatment as first-line therapy for patients with chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2013;13(4):477–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Review Crit Rev Oncol Hematol. 2022;171:10358.

    Google Scholar 

  10. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    Article  CAS  PubMed  Google Scholar 

  11. Soverini S, Branford S, Nicolini FE, et al. Implications of BCR-ABL1 kinase domain-mediated resistance in chronic myeloid leukemia. Leuk Res. 2014;38(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  12. Soverini S, Iacobucci I, Baccarani M, Martinelli G. Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica. 2007;92(4):437–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes T, Saglio G, Branford S, et al. Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J Clin Oncol. 2009;27(25):4204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quintas-Cardama A, Kantarjian H, Cortes J. Targeting ABL and SRC kinases in chronic myeloid leukemia: experience with dasatinib. Future Oncol. 2006;2(6):655–65.

    Article  CAS  PubMed  Google Scholar 

  15. Redaelli S, Piazza R, Rostagno R, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27(3):469–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–26. Phase 1 result of asciminib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes TP, Saglio G, Quintás-Cardama A, et al. BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase. Leukemia. 2015;29(9):1832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eide CA, Zabriskie MS, Savage Stevens SL, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36(4):431-443.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–9.

    Article  CAS  PubMed  Google Scholar 

  20. Loscocco F, Visani G, Galimberti S, et al. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front Oncol. 2019;9:939.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reis FR, Vasconcelos FC, Pereira DL, et al. Survivin and P-glycoprotein are associated and highly expressed in late phase chronic myeloid leukemia. Oncol Rep. 2011;26(2):471–8.

    CAS  PubMed  Google Scholar 

  22. Zheng Q, Wu H, Yu Q, et al. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. Pharmacogenomics J. 2015;15:127–34.

    Article  CAS  PubMed  Google Scholar 

  23. Davies A, Jordanides NE, Giannoudis A, et al. Nilotinib concentration in cell lines and primary CD34(+) chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia. 2009;23:1999–2006.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou H, Xu R. Leukemia stem cells: the root of chronic myeloid leukemia. Protein Cell. 2015;6(6):403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lechman ER, Gentner B, van Galen P, et al. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell. 2012;11(6):799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang B, Nguyen LXT, Li L, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med. 2018;24(4):450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breccia M, Chiodi F, Nardozza AP, et al. Real-world analysis of the therapeutic management and disease burden in chronic myeloid leukemia patients with later lines in italy. J Clin Med. 2022;11(13):3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soverini S, De Benedittis C, Castagnetti F, et al. In chronic myeloid leukemia patients on second-line tyrosine kinase inhibitor therapy, deep sequencing of BCR-ABL1 at the time of warning may allow sensitive detection of emerging drug-resistant mutants. BMC Cancer. 2016;16:572.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Soverini S, Gnani A, Colarossi S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114(10):2168–71.

    Article  CAS  PubMed  Google Scholar 

  30. Soverini S, Abruzzese E, Bocchia M, et al. Next-generation sequencing for BCR-ABL1 kinase domain mutation testing in patients with chronic myeloid leukemia: a position paper. J Hematol Oncol. 2019;12(1):131. Position paper about NGS in CML.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soverini S, Bavaro L, De Benedettis C, et al. Prospective assessment of NGS-detectable mutations in CML patients with non optimal response: the NEXT-in-CML study. Blood. 2020;135(8):534–41.

    Article  PubMed  Google Scholar 

  33. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cortes J, Apperley JF, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–50. OPTIC trial results.

    Article  CAS  PubMed  Google Scholar 

  35. Hochhaus A, Gambacorti-Passerini C, Abboud C, et al. BYOND Study Investigators. Bosutinib for pretreated patients with chronic phase chronic myeloid leukemia: primary results of the phase 4 BYOND study. Leukemia. 2020;34(8):2125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wylie A, Schoepfer J, Jahnke W, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature. 2017;543(7647):733–7.

    Article  CAS  PubMed  Google Scholar 

  37. Manley PW, Barys L, Cowan-Jacob SW. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk Res. 2020;98:106458.

    Article  CAS  PubMed  Google Scholar 

  38. Mauro MJ, Kim DW, Cortes J, et al. Combination of asciminib plus nilotinib (NIL) or dasatinib (DAS) in patients (pts) with chronic myeloid leukemia (CML): results from a phase 1 study. EHA, 2019, S884.

  39. Cortes J, Lang F, Kim DW, et al. Combination therapy using asciminib plus imatinib (ima) in patients with chronic myeloid leukemia (CML): results from a phase 1 study. EHA, 2019, S883

  40. Cortes J, Hughes TP, Mauro MJ, et al. Asciminib, a first-in-class STAMP inhibitor, provides durable molecular response in patients (pts) with chronic myeloid leukemia (CML) harboring the T315I mutation: primary efficacy and safety results from a phase 1 trial. Blood. 2020;136(Supplement 1):47–50.

    Article  Google Scholar 

  41. Réa D, Mauro MJ, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138(21):2031–41. ASCEMBL trial results.

    Article  PubMed  Google Scholar 

  42. Mauro MJ, Minami Y, Rea D, et al. Efficacy and safety results from Ascembl, a multicentre, apen-label, phase 3 study of asciminib, a first-in-class STAMP inhibitor, vs bosutinib in patients with chronic myeloid leukemia in chronic phase after ≥2 prior tyrosin kinase inhibitors: update after 48 weeks. Blood 2021; 138 (supplement 1, abstract 310)

  43. Jiang Q, Huang X, Chen Z, et al. An updated safety and efficacy results of phase 1 study of HQP1351, a novel 3rd generation of BCR-ABL tyrosine kinase inhibitor (TKI), in patients with TKI resistant chronic myeloid leukemia. Blood. 2019;134(Supplement 1):493.

    Article  Google Scholar 

  44. Jiang, Q, Shi D, Li Z, et al. Updated safety and efficacy results of phase 1 study of Olverembatinib (HQP1351), a novel third-generation BCR-ABL tyrosine kinase inhibitor (TKI), in patients with TKI-resistant chronic myeloid leukemia (CML). Blood, 2021, 138 (supplement 2, abstract 311). Update on olverembatinib phase 1 trial.

  45. Jiang Q, Shi D, Li Z, et al. Updated results of pivotal phase 2 trials of olverembatinib (HQP1351) in patients (pts) with tyrosine kinase inhibitor (TKI)-resistant BCR-ABL1T315I-mutated chronic- and accelerated-phase chronic myeloid leukemia (CML-CP and CML-AP). Blood, 2021, 138 (supplement 2, abstract 3598)

  46. Cortes JE, Saikia T, Kim DW, et al. An update of safety and efficacy results from phase 1 dose-escalation and expansion study of vodobatinib, a novel oral BCR-ABL1 tyrosine kinase inhibitor (TKI), in patients with chronic myeloid leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) failing prior TKI therapies. Blood, 2021, 138 (supplement 2, abstract 309). Vodobatinib phase 1 results.

  47. Turkina AG, Vinogradova O, Lomaia E, et al. PF-114 in patients failing prior tyrosine kinase-inhibitor therapy including BCR::ABL1T315I. Blood. 2021, 138 (supplement 2, abstract 1482).

  48. Lipton JH, Bryden P, Sidhu MK, et al. Comparative efficacy of tyrosine kinase inhibitor treatments in the third-line setting, for chronic-phase chronic myelogenous leukemia after failure of second-generation tyrosine kinase inhibitors. Leuk Res. 2015;39(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  49. Breccia M, Luciano L, Annunziata M, et al. Multicenter, prospective and retrospective observational cohort study of ponatinib in patients with CML in Italy: primary analysis of the OITI trial. Blood, 2021, 138 (supplement 1, abstract 3603).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Breccia.

Ethics declarations

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Conflict of Interest

MB received honoraria by Novartis, Incyte, Pfizer, BMS/Celgene, and AbbVie. All the other authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scalzulli, E., Carmosino, I., Bisegna, M.L. et al. CML Resistant to 2nd-Generation TKIs: Mechanisms, Next Steps, and New Directions. Curr Hematol Malig Rep 17, 198–205 (2022). https://doi.org/10.1007/s11899-022-00683-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00683-3

Keywords

Navigation