Skip to main content

Advertisement

Log in

Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia

  • Myelodysplastic Syndromes and MPN/MDS Overlap (M Patnaik, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite recent advances in the treatment of de novo acute myeloid leukemia (AML), AML arising from antecedent chronic myelomonocytic leukemia (CMML) continues to have dismal outcomes. While the unique biological drivers of CMML and subsequent leukemic transformation (LT) have been revealed with advances in molecular characterization, this has not yet translated to the bedside. Here, we review these biologic drivers, outcomes with current therapies, and rationale avenues of future investigation specifically in blast phase CMML (CMML-BP).

Recent Findings

CMML-BP outcomes are studied as an aggregate with more common categories of AML with myelodysplasia-related changes (AML-MRCs) or the even broader category of secondary AML (sAML), which illustrates the crux of the problem. While a modest survival advantage with allogeneic hematopoietic stem cell transplant exists, the difficulty is bridging patients to transplant and managing patients that require an allograft-sparing approach. Limited data suggest that short-lived remissions can be obtained employing CPX-351 or venetoclax-based lower intensity combination therapy. Promising future strategies include repurposing cladribine, exploiting the supportive role of dendritic cell subsets with anti-CD123 therapies, MCL-1 inhibition, dual MEK/PLK1 inhibition, FLT3 inhibition in RAS-mutated and CBL-mutated subsets, and immune therapies targeting novel immune checkpoint molecules such as the leukocyte immunoglobulin-like receptor B4 (LILRB4), an immune-modulatory transmembrane protein restrictively expressed on monocytic cells.

Summary

The successful management of an entity as unique as CMML-BP will require a cooperative, concerted effort to design and conduct clinical trials dedicated to this rare form of sAML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fenaux P, et al. Prognostic factors in adult chronic myelomonocytic leukemia: an analysis of 107 cases. J Clin Oncol. 1988;6(9):1417–24.

    Article  PubMed  CAS  Google Scholar 

  2. Tefferi A, et al. Chronic myelomonocytic leukemia: natural history and prognostic determinants. Mayo Clin Proc. 1989;64(10):1246–54.

    Article  PubMed  CAS  Google Scholar 

  3. Itzykson R, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428–36.

    Article  PubMed  CAS  Google Scholar 

  4. Patnaik MM, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27(7):1504–10.

    Article  PubMed  CAS  Google Scholar 

  5. Such E, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005–15.

    Article  PubMed  CAS  Google Scholar 

  6. Rivera Duarte A, et al. Blastic Transformation in Mexican Population With Chronic Myelomonocytic Leukemia. Clin Lymphoma Myeloma Leuk. 2017;17(8):532–8.

    Article  PubMed  Google Scholar 

  7. Alfonso A, et al. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am J Hematol. 2017;92(7):599–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pleyer L, et al. Outcomes of patients with chronic myelomonocytic leukaemia treated with non-curative therapies: a retrospective cohort study. Lancet Haematol. 2021;8(2):e135–48.

    Article  PubMed  Google Scholar 

  9. Coston T, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94(7):767–79.

    PubMed  CAS  Google Scholar 

  10. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  PubMed  CAS  Google Scholar 

  11. Margolskee E. So-called “blast phase” of chronic myelomonocytic leukemia: a plea for uniform terminology. Leukemia. 2018;32(12):2716.

    Article  PubMed  Google Scholar 

  12. Granfeldt Ostgard LS, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol. 2015;33(31):3641–9.

    Article  PubMed  Google Scholar 

  13. Savona MR, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125(12):1857–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Courville EL, et al. Clinicopathologic analysis of acute myeloid leukemia arising from chronic myelomonocytic leukemia. Mod Pathol. 2013;26(6):751–61.

    Article  PubMed  Google Scholar 

  15. Beran M, et al. Prognostic factors and risk assessment in chronic myelomonocytic leukemia: validation study of the M.D. Anderson Prognostic Scoring System. Leuk Lymphoma. 2007;48(6): 1150-60.

  16. Elena C, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Patnaik MM, et al. Blast transformation in chronic myelomonocytic leukemia: Risk factors, genetic features, survival, and treatment outcome. Am J Hematol. 2015;90(5):411–6.

    Article  PubMed  Google Scholar 

  18. Patnaik MM, et al. Chronic myelomonocytic leukemia in younger patients: molecular and cytogenetic predictors of survival and treatment outcome. Blood Cancer J. 2015;5:e270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. •• Patnaik MM, et al. Blast phase chronic myelomonocytic leukemia: Mayo-MDACC collaborative study of 171 cases. Leukemia. 2018;32(11):2512–8. Largest cohort to date establishing benchmark outcomes in this rare patient group.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang G, et al. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol. 2014;89(8):813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wassie EA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89(12):1111–5.

    Article  PubMed  CAS  Google Scholar 

  22. Ricci C, et al. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant. Clin Cancer Res. 2010;16(8):2246–56.

    Article  PubMed  CAS  Google Scholar 

  23. McClure RF, et al. Clinical significance of DNA variants in chronic myeloid neoplasms: a report of the association for molecular pathology. J Mol Diagn. 2018;20(6):717–37.

    Article  PubMed  CAS  Google Scholar 

  24. Patel BJ, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31(12):2815–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. •• Carr RM, et al. RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nat Commun. 2021;12(1):2901. Critical translational concept that is the basis of dual MEK/PLK1 inhibition in RAS-mutated CMML and CMML-BP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gelsi-Boyer V, et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol. 2010;151(4):365–75.

    Article  PubMed  CAS  Google Scholar 

  27. Patnaik MM, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kuo MC, et al. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia. 2009;23(8):1426–31.

    Article  PubMed  CAS  Google Scholar 

  29. Tsai SC, et al. Biological Activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic Syndromes. Clin Cancer Res. 2015;21(15):3541–51.

    Article  PubMed  CAS  Google Scholar 

  30. Bera R, et al. RUNX1 mutations promote leukemogenesis of myeloid malignancies in ASXL1-mutated leukemia. J Hematol Oncol. 2019;12(1):104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Marinaccio C, et al. LKB1/STK11 is a tumor suppressor in the progression of myeloproliferative neoplasms. Cancer Discov. 2021;11(6):1398–410.

  32. Coltro G, et al. Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia. 2020;34(5):1407–21.

    Article  PubMed  CAS  Google Scholar 

  33. Lindsley RC, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Johnson SM, et al. Acute Myeloid Leukemia with Co-mutated ASXL1 and SRSF2 Exhibits Monocytic Differentiation and has a Mutational Profile Overlapping with Chronic Myelomonocytic Leukemia. Hemasphere. 2019;3(4):e292.

    PubMed  PubMed Central  Google Scholar 

  35. Richardson DR, et al. Genomic characteristics and prognostic significance of co-mutated ASXL1/SRSF2 acute myeloid leukemia. Am J Hematol. 2021.

  36. Montalban-Bravo G, et al. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020;4(3):482–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang W, et al. Characterization of chronic myelomonocytic leukemia with TP53 mutations. Leuk Res. 2018;70:97–9.

    Article  PubMed  CAS  Google Scholar 

  38. Peng J, et al. Chronic myelomonocytic leukemia with nucleophosmin (NPM1) mutation. Eur J Haematol. 2016;96(1):65–71.

    Article  PubMed  CAS  Google Scholar 

  39. Montalban-Bravo G, et al. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019;3(6):922–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Klossowski S, et al. Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia. J Clin Invest. 2020;130(2):981–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tefferi A, et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia. 2012;26(3):475–80.

    Article  PubMed  CAS  Google Scholar 

  42. Guerra V, et al. Outcomes of Chronic Myelomonocytic Leukemia (CMML) after Hypomethylating Agent (HMA) Failure. Blood. 2020;136(Supplement 1):22–3.

    Article  Google Scholar 

  43. • Lucas N, et al. Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia. 2019;33(10):2466–80. Cooperative role of pDCs in CMML progression is an important new concept providing the basis for targeting the CD123/pDC axis.

    Article  PubMed  CAS  Google Scholar 

  44. Sisirak V, et al. Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res. 2012;72(20):5188–97.

    Article  PubMed  CAS  Google Scholar 

  45. Mathew RA, et al. Cutaneous manifestations in CMML: Indication of disease acceleration or transformation to AML and review of the literature. Leuk Res. 2012;36(1):72–80.

    Article  PubMed  Google Scholar 

  46. Vitte F, et al. Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations: a study of 42 cases. Am J Surg Pathol. 2012;36(9):1302–16.

    Article  PubMed  Google Scholar 

  47. Brunetti L, et al. Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: a shared clonal origin. Leukemia. 2017;31(5):1238–40.

    Article  PubMed  CAS  Google Scholar 

  48. Patnaik MM, et al. Biallelic inactivation of the retinoblastoma gene results in transformation of chronic myelomonocytic leukemia to a blastic plasmacytoid dendritic cell neoplasm: shared clonal origins of two aggressive neoplasms. Blood Cancer J. 2018;8(9):82.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Merlevede J, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Itzykson R, et al. Decitabine Versus Hydroxyurea for Advanced Proliferative CMML: Results of the Emsco Randomized Phase 3 Dacota Trial. Blood. 2020;136(Supplement 1):53–4.

    Article  Google Scholar 

  51. •• Pophali P, et al. Prognostic impact and timing considerations for allogeneic hematopoietic stem cell transplantation in chronic myelomonocytic leukemia. Blood Cancer J. 2020;10(11):121. Provides historical benchmark for post transplant outcomes in CMML and CMML-BP.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • Lancet JE, et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J Clin Oncol. 2018;36(26):2684–92. One of the few existing studies of novel therapy explicitly reporting outcomes in CMML-BP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lancet, JE, et al. Five-year final results of a phase III study of CPX-351 versus 7+3 in older adults with newly diagnosed high-risk/secondary AML. J Clin Oncol. 2020. 38(15_suppl): 7510.

  54. Chiche E, et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: a multicentric French cohort. Blood Adv. 2021;5(1):176–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Montalban Bravo G, et al. Initial results of a phase 1 dose escalation study of CPX-351 for patients with Int-2 or high risk IPSS myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) after failure to hypomethylating agents. Blood. 2020;136(Supplement 1):1–3.

    Article  Google Scholar 

  56. Freyer CW, et al. Revisiting the role of cladribine in acute myeloid leukemia: an improvement on past accomplishments or more old news? Am J Hematol. 2015;90(1):62–72.

    Article  PubMed  CAS  Google Scholar 

  57. Martin MG, et al. Cladribine in the treatment of acute myeloid leukemia: a single-institution experience. Clin Lymphoma Myeloma. 2009;9(4):298–301.

    Article  PubMed  CAS  Google Scholar 

  58. Jaglal MV, et al. Cladribine, cytarabine, filgrastim, and mitoxantrone (CLAG-M) compared to standard induction in acute myeloid leukemia from myelodysplastic syndrome after azanucleoside failure. Leuk Res. 2014;38(4):443–6.

    Article  PubMed  CAS  Google Scholar 

  59. Talati C, et al. Comparison of induction strategies and responses for acute myeloid leukemia patients after resistance to hypomethylating agents for antecedent myeloid malignancy. Leuk Res. 2020;93:106367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Przespolewski, A., et al., Cladribine, cytarabine, and GCSF with and without mitoxantrone (CLAG +/- M) is highly effective for poor risk acute myeloid leukemia with adverse karyotype and prior hypomethylating therapy. Leuk Lymphoma. 2021: 1-6.

  61. Kadia TM, et al. Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematol. 2018;5(9):e411–21.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kadia T. Phase II study of venetoclax added to cladribine + low dose AraC (LDAC) alternating with 5-azacytidine demonstrates high rates of minimal residual disease (MRD) negative complete remissions (CR) and excellent tolerability in older patients with newly diagnosed acute myeloid leukemia (AML). 2020.

  63. Kornblau SM, et al. Clinical and laboratory studies of 2-chlorodeoxyadenosine +/- cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia. 1996;10(10):1563–9.

    PubMed  CAS  Google Scholar 

  64. Carrera CJ, et al. Potent toxicity of 2-chlorodeoxyadenosine toward human monocytes in vitro and in vivo A novel approach to immunosuppressive therapy. J Clin Invest. 1990;86(5):1480–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Singh V, et al. 2-Chlorodeoxyadenosine (cladribine) induces apoptosis in human monocyte-derived dendritic cells. Clin Exp Immunol. 2013;173(2):288–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zolnierczyk JD, et al. In vitro antileukemic activity of novel adenosine derivatives bearing boron cluster modification. Bioorg Med Chem. 2016;24(21):5076–87.

    Article  PubMed  CAS  Google Scholar 

  67. Poczta A, et al. Antileukemic activity of novel adenosine derivatives. Sci Rep. 2019;9(1):14135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pei S et al. Monocytic subclones confer resistance to venetoclax-based therapy in acute myeloid leukemia patients. Cancer Discovery 2020: CD-19-0710.

  69. Kuusanmaki H, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105(3):708–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. DiNardo CD, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29.

    Article  PubMed  CAS  Google Scholar 

  71. Wei AH, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135(24):2137–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. • Montalban-Bravo G, et al. Activity of venetoclax-based therapy in chronic myelomonocytic leukemia. Leukemia. 2021;35(5):1494–9. Likewise, one of the few existing studies of novel therapy explicitly reporting outcomes in CMML-BP.

  73. Certo M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9(5):351–65.

    Article  PubMed  CAS  Google Scholar 

  74. Salhotra A, et al. Outcome of secondary acute myeloid leukemia treated with hypomethylating agent plus venetoclax (HMA-Ven) or liposomal daunorubicin-cytarabine (CPX-351). Am J Hematol. 2021.

  75. Faderl S, et al. Oral clofarabine in the treatment of patients with higher-risk myelodysplastic syndrome. Blood. 2009;114(22):118–118.

    Article  Google Scholar 

  76. Cook S, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler. 2011;17(5):578–93.

    Article  PubMed  CAS  Google Scholar 

  77. Leist TP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  78. Wei AH, et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med. 2020;383(26):2526–37.

    Article  PubMed  CAS  Google Scholar 

  79. Smith PG, et al. Azacitidine/decitabine synergism with the NEDD8-activating enzyme inhibitor MLN4924 in pre-clinical AML models. Blood. 2011;118(21):578–578.

    Article  Google Scholar 

  80. Sekeres MA, et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021.

  81. Knorr KL, et al. MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ. 2015;22(12):2133–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Torka P, et al. Pevonedistat, a NEDD8-activating enzyme inhibitor, induces apoptosis and augments efficacy of chemotherapy and small molecule inhibitors in pre-clinical models of diffuse large B-cell lymphoma. EJHaem. 2020;1(1):122–32.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Smith BN, et al. Pevonedistat, a Nedd-8 activating enzyme inhibitor, upregulates NOXA to increase effectiveness of azacitidine and venetoclax in preclinical models of acute myelogenous leukemia. Blood. 2019;134(Supplement_1):1380.

    Article  Google Scholar 

  84. Short N, Bose P, Dinardo C, Garcia-Manero G, Muftuoglu M, Alaniz Z, Patel K, Montalban-Bravo G, Jain J, Alvarado Y, Jabbour E, Andreeff M, Delumpa R, Kantarjian H, Cortes J. Preliminary results of a phase I/II study of azacitidine, venetoclax and pevonedistat in patients with secondary acute myeloid leukemia who are unfit for intensive chemotherapy. 25th Congress of the European Hematology Association Virtual Edition, 2020.

  85. El-Mesery M, et al. MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol. 2015;172(5):1222–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mekinian A, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology (Oxford). 2016;55(2):291–300.

    Article  CAS  Google Scholar 

  87. Xiao W, et al. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood. 2021;137(10):1377–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. El Achi H, et al. CD123 as a biomarker in hematolymphoid malignancies: principles of detection and targeted therapies. Cancers (Basel). 2020;12(11):3087. https://doi.org/10.3390/cancers12113087.

  89. Jen EY, Gao X, Li L, et al. FDA approval summary: tagraxofusp-erzs for treatment of blastic plasmacytoid dendritic cell neoplasm. Clin Cancer Res. 2020;26(3):532–6.

  90. Hammond D, Pemmaraju N. Tagraxofusp for blastic plasmacytoid dendritic cell neoplasm. Hematol Oncol Clin North Am. 2020;34(3):565–74.

    Article  PubMed  Google Scholar 

  91. Patnaik MM, et al. Results from ongoing phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with relapsed/refractory chronic myelomonocytic leukemia (CMML). Journal of Clinical Oncology. 2019;37(15_suppl):7059.

    Article  Google Scholar 

  92. Pemmaraju N, et al. Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC), in patients with relapsed/refractory (R/R) blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood. 2020;136(Supplement 1):11–3.

    Article  Google Scholar 

  93. Kuruvilla VM, et al. Combining IMGN632, a novel CD123-targeting antibody drug conjugate with azacitidine and venetoclax facilitates apoptosis in vitro and prolongs survival in vivo in AML models. Blood. 2020;136(Supplement 1):32–3.

    Article  Google Scholar 

  94. Tron AE, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9(1):5341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Cidado J, et al. AZD4573 Is a Highly Selective CDK9 Inhibitor That Suppresses MCL-1 and Induces Apoptosis in Hematologic Cancer Cells. Clin Cancer Res. 2020;26(4):922–34.

    Article  PubMed  CAS  Google Scholar 

  96. Janne P, Rybkin Il, Spira AI, et al. KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in advanced/metastatic non-small-cell lung cancer harboring KRAS G12C mutation. 2020: EORTC-NCI-AACR Symposium. Abstract LBA3. Presented October 25, 2020.

  97. Posch C, et al. Combined inhibition of MEK and Plk1 has synergistic antitumor activity in NRAS mutant melanoma. J Invest Dermatol. 2015;135(10):2475–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Borthakur G, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122(12):1871–9.

    Article  PubMed  CAS  Google Scholar 

  99. Muller-Tidow C, et al. A randomized, open-label, phase I/II trial to investigate the maximum tolerated dose of the Polo-like kinase inhibitor BI 2536 in elderly patients with refractory/relapsed acute myeloid leukaemia. Br J Haematol. 2013;163(2):214–22.

    PubMed  Google Scholar 

  100. Dohner H, et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood. 2014;124(9):1426–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ottmann OG, et al. Phase I dose-escalation trial investigating volasertib as monotherapy or in combination with cytarabine in patients with relapsed/refractory acute myeloid leukaemia. Br J Haematol. 2019;184(6):1018–21.

    Article  PubMed  Google Scholar 

  102. Zeidan AM, et al. A phase Ib study of onvansertib, a novel oral PLK1 inhibitor, in combination therapy for patients with relapsed or refractory acute myeloid leukemia. Clin Cancer Res. 2020;26(23):6132–40.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang X, et al. Polo-like kinase 4’s critical role in cancer development and strategies for Plk4-targeted therapy. Front Oncol. 2021;11:587554.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Veitch ZW, et al. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: a phase 1 dose-escalation trial. Br J Cancer. 2019;121(4):318–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Murphy T, et al. Preliminary results from a phase 1 study of Cfi-400495, a PLK4 inhibitor, in patients with acute myeloid leukemia and high risk MDS. Blood. 2020;136(Supplement 1):1–2.

    Article  Google Scholar 

  106. •• Deng M, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562(7728):605–9. Toghether, these provide translational background for the most exciting future target in CMML-BP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. John S, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther. 2018;26(10):2487–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Dobrowolska H, et al. Expression of immune inhibitory receptor ILT3 in acute myeloid leukemia with monocytic differentiation. Cytometry B Clin Cytom. 2013;84(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  109. Dobrowolska H. Expression of inhibitory receptor ILT3 on normal hematopoietic stem cells and leukemic progenitors. J Cell Sci Ther. 2013;4:4. https://doi.org/10.4172/2157-7013.S1.025.

  110. Gui X, et al. Disrupting LILRB4/APOE interaction by an efficacious humanized antibody reverses T-cell suppression and blocks AML development. Cancer Immunol Res. 2019;7(8):1244–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li Z, et al. LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol. 2020;17(3):272–82.

    Article  PubMed  CAS  Google Scholar 

  112. Chien KS, et al. LILRB4 expression in chronic myelomonocytic leukemia and myelodysplastic syndrome based on response to hypomethylating agents. Leuk Lymphoma. 2020;61(6):1493–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Singh L, et al. ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. Mol Cancer Res. 2020.

  114. Anami Y, et al. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19(11):2330–9.

  115. DiNardo CD, et al. A First-in-human (FIH) phase 1 study of the anti-LILRB4 antibody IO-202 in relapsed/refractory (R/R) myelomonocytic and monocytic acute myeloid leukemia (AML) and R/R chronic myelomonocytic leukemia (CMML). Blood. 2020;136(Supplement 1):19–20.

    Article  Google Scholar 

  116. Jankowska AM, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118(14):3932–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Schnittger S, et al. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica. 2012;97(12):1890–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kohlmann A, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28(24): 3858-65.

  119. Sargin B, et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood. 2007;110(3):1004–12.

    Article  PubMed  CAS  Google Scholar 

  120. Fernandes MS, et al. Novel oncogenic mutations of CBL in human acute myeloid leukemia that activate growth and survival pathways depend on increased metabolism. J Biol Chem. 2010;285(42):32596–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Weisberg E, et al. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br J Haematol. 2019;187(4):488–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Narita T, et al. Identification of a novel small molecule HIF-1alpha translation inhibitor. Clin Cancer Res. 2009;15(19):6128–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Hallal R, et al. Acriflavine targets oncogenic STAT5 signaling in myeloid leukemia cells. J Cell Mol Med. 2020;24(17):10052–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nehme R, et al. Repurposing of acriflavine to target chronic myeloid leukemia treatment. Curr Med Chem. 2021;28(11):2218–33.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Montalban-Bravo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myelodysplastic Syndromes and MPN/MDS Overlap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammond, D., Montalban-Bravo, G. Management and Outcomes of Blast Transformed Chronic Myelomonocytic Leukemia. Curr Hematol Malig Rep 16, 405–417 (2021). https://doi.org/10.1007/s11899-021-00643-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00643-3

Keywords

Navigation