Skip to main content

Advertisement

Log in

Clinical and Molecular Approach to Adult-Onset, Neoplastic Monocytosis

  • Myelodysplastic Syndromes and MPN/MDS Overlap (M Patnaik, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we provide a comprehensive and contemporary understanding of malignant monocytosis and provide a framework by which the appropriate diagnosis with malignant monocytosis can be rendered.

Recent Findings

Increasing data support the use of molecular data to refine the diagnostic approach to persistent monocytosis. The absence of a TET2, SRSF2, or ASXL1 mutation has ≥ 90% negative predictive value for a diagnosis of CMML. These data may also reliably differentiate chronic myelomonocytic leukemia, the malignancy that is most associated with mature monocytosis, from several other diseases that can be associated with typically a lesser degree of monocytosis. These include acute myelomonocytic leukemia, acute myeloid leukemia with monocytic differentiation, myelodysplastic syndromes, and myeloproliferative neoplasms driven by BCR-ABL1, PDGFRA, PDGFRB, or FGFR1 rearrangements or PCM1-JAK2 fusions among other rarer aberrations. The combination of monocyte partitioning with molecular data in patients with persistent monocytosis may increase the predictive power for the ultimate development of CMM but has not been prospectively validated.

Summary

Many conditions, both benign and malignant, can be associated with an increase in mature circulating monocytes. After reasonably excluding a secondary or reactive monocytosis, there should be a concern for and investigation of malignant monocytosis, which includes hematopathologic review of blood and marrow tissues, flow cytometric analysis, and cytogenetic and molecular studies to arrive at an appropriate diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol. 2013;14:821–30.

    Article  CAS  PubMed  Google Scholar 

  2. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92.

    Article  CAS  PubMed  Google Scholar 

  3. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74–80.

    Article  CAS  PubMed  Google Scholar 

  4. Rees AJ. Monocyte and macrophage biology: an overview. Semin Nephrol. 2010;30:216–33.

    Article  CAS  PubMed  Google Scholar 

  5. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    Article  CAS  PubMed  Google Scholar 

  6. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC; 2017.

    Google Scholar 

  8. Ahmed SG, Bukar AA, Jolayemi B. Hematological indices of sickle cell anaemia patients with pulmonary tuberculosis in northern Nigeria. Mediterr J Hematol Infect Dis. 2010;2:e2010014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kini RG, Chandrashekhar J. Parasite and the circulating pool-characterisation of leukocyte number and morphology in malaria. J Clin Diagn Res. 2016;10:EC44–8.

    PubMed  PubMed Central  Google Scholar 

  10. Bardina SV, Michlmayr D, Hoffman KW, Obara CJ, Sum J, Charo IF, et al. Differential roles of chemokines CCL2 and CCL7 in monocytosis and leukocyte migration during West Nile virus infection. J Immunol. 2015;195:4306–18.

    Article  CAS  PubMed  Google Scholar 

  11. Hensel M, Gradel L, Kutz A, Haubitz S, Huber A, Mueller B, et al. Peripheral monocytosis as a predictive factor for adverse outcome in the emergency department: survey based on a register study. Medicine (Baltimore). 2017;96:e7404.

    Article  Google Scholar 

  12. Thone J, Kessler E. Monocytosis subsequent to ziprasidone treatment: a possible side effect. Prim Care Companion J Clin Psychiatry. 2007;9:465–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garman L, Pelikan RC, Rasmussen A, Lareau CA, Savoy KA, Deshmukh US, et al. Single cell transcriptomics implicate novel monocyte and T cell immune dysregulation in sarcoidosis. Front Immunol. 2020;11:567342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wurm K, Lohr G. Immuno-cytological blood tests in cases of sarcoidosis. Sarcoidosis. 1986;3:52–9.

    CAS  PubMed  Google Scholar 

  15. Sumegi A, Antal-Szalmas P, Aleksza M, Kovacs I, Sipka S, Zeher M, et al. Glucocorticosteroid therapy decreases CD14-expression and CD14-mediated LPS-binding and activation of monocytes in patients suffering from systemic lupus erythematosus. Clin Immunol. 2005;117:271–9.

    Article  PubMed  Google Scholar 

  16. Lescoat A, Lecureur V, Roussel M, Sunnaram BL, Ballerie A, Coiffier G, et al. CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis. Clin Rheumatol. 2017;36:1649–54.

    Article  PubMed  Google Scholar 

  17. Higashi-Kuwata N, Jinnin M, Makino T, Fukushima S, Inoue Y, Muchemwa FC, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther. 2010;12:R128.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Demeter J, Mihalik R, Benczur M, Lehoczky D, Paloczi K. Peripheral blood leukocyte subpopulations a long time after posttraumatic splenectomy. Haematologia (Budap). 1991;24:139–44.

    CAS  Google Scholar 

  19. Grabowski S. A case of monocytosis after splenectomy. Pol Tyg Lek (Wars). 1952;7:795–6.

    CAS  Google Scholar 

  20. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325:612–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatnagar S, Chandra J, Narayan S. Hematological changes and predictors of bone marrow recovery in patients with neutropenic episodes in acute lymphoblastic leukemia. J Trop Pediatr. 2002;48:200–3.

    Article  PubMed  Google Scholar 

  22. Le Bourgeois A, Lestang E, Guillaume T, Delaunay J, Ayari S, Blin N, et al. Prognostic impact of immune status and hematopoietic recovery before and after fludarabine, IV busulfan, and antithymocyte globulins (FB2 regimen) reduced-intensity conditioning regimen (RIC) allogeneic stem cell transplantation (allo-SCT). Eur J Haematol. 2013;90:177–86.

    Article  PubMed  Google Scholar 

  23. Nishiwaki U, Nakayama S, Yokote T, Hiraoka N, Tsuji M. Classical Hodgkin lymphoma producing macrophage colony-stimulating factor with resultant monocytosis. Br J Haematol. 2017;176:343.

    Article  PubMed  Google Scholar 

  24. Tadmor T, Fell R, Polliack A, Attias D. Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells. Hematol Oncol. 2013;31:65–71.

    Article  PubMed  Google Scholar 

  25. Maran R, Mittelman M, Cohen AM, Djaldetti M. Myelokathexis and monocytosis in a patient with gastric cancer. Acta Haematol. 1992;87:210–2.

    Article  CAS  PubMed  Google Scholar 

  26. Eo WK, Kwon BS, Kim KH, Kim HY, Kim HB, Koh SB, et al. Monocytosis as a prognostic factor for survival in stage IB and IIA cervical cancer. J Cancer. 2018;9:64–70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2018 update on diagnosis, risk stratification and management. Am J Hematol. 2018;93:824–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kerrigan DP, Castillo A, Foucar K, Townsend K, Neidhart J. Peripheral blood morphologic changes after high-dose antineoplastic chemotherapy and recombinant human granulocyte colony-stimulating factor administration. Am J Clin Pathol. 1989;92:280–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lynch DT, Hall J, Foucar K. How I investigate monocytosis. Int J Lab Hematol. 2018;40:107–14.

    Article  CAS  PubMed  Google Scholar 

  30. Xu Y, McKenna RW, Karandikar NJ, Pildain AJ, Kroft SH. Flow cytometric analysis of monocytes as a tool for distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Am J Clin Pathol. 2005;124:799–806.

    Article  PubMed  Google Scholar 

  31. Lacronique-Gazaille C, Chaury MP, Le Guyader A, Faucher JL, Bordessoule D, Feuillard J. A simple method for detection of major phenotypic abnormalities in myelodysplastic syndromes: expression of CD56 in CMML. Haematologica. 2007;92:859–60.

    Article  PubMed  Google Scholar 

  32. Selimoglu-Buet D, Wagner-Ballon O, Saada V, Bardet V, Itzykson R, Bencheikh L, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125:3618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goasguen JE, Bennett JM, Bain BJ, Vallespi T, Brunning R, Mufti GJ, et al. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94:994–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang DT, Greenwood JH, Hartung L, Hill S, Perkins SL, Bahler DW. Flow cytometric analysis of different CD14 epitopes can help identify immature monocytic populations. Am J Clin Pathol. 2005;124:930–6.

    Article  CAS  PubMed  Google Scholar 

  35. Foucar K, Hsi ED, Wang SA, Rogers HJ, Hasserjian RP, Bagg A, et al. Concordance among hematopathologists in classifying blasts plus promonocytes: a bone marrow pathology group study. Int J Lab Hematol. 2020;42:418–22.

    Article  PubMed  Google Scholar 

  36. Shallis RM, Xu ML, Podoltsev NA, Curtis SA, Considine BT, Khanna SR, et al. Be careful of the masquerades: differentiating secondary myelodysplasia from myelodysplastic syndromes in clinical practice. Ann Hematol. 2018;97:2333–43.

    Article  PubMed  Google Scholar 

  37. Mason CC, Khorashad JS, Tantravahi SK, Kelley TW, Zabriskie MS, Yan D, et al. Age-related mutations and chronic myelomonocytic leukemia. Leukemia. 2016;30:906–13.

    Article  CAS  PubMed  Google Scholar 

  38. Palomo L, Garcia O, Arnan M, Xicoy B, Fuster F, Cabezon M, et al. Targeted deep sequencing improves outcome stratification in chronic myelomonocytic leukemia with low risk cytogenetic features. Oncotarget. 2016;7:57021–35.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hwang SM, Kim SM, Nam Y, Kim J, Kim S, Ahn YO, et al. Targeted sequencing aids in identifying clonality in chronic myelomonocytic leukemia. Leuk Res. 2019;84:106190.

    Article  CAS  PubMed  Google Scholar 

  40. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol. 2010;28:3858–65.

    Article  CAS  PubMed  Google Scholar 

  41. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98.

    Article  CAS  PubMed  Google Scholar 

  43. Itzykson R, Solary E. An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia. 2013;27:1441–50.

    Article  CAS  PubMed  Google Scholar 

  44. Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12.

    Article  CAS  PubMed  Google Scholar 

  45. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101:260–71.

    Article  CAS  PubMed  Google Scholar 

  47. Patnaik MM, Parikh SA, Hanson CA, Tefferi A. Chronic myelomonocytic leukaemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165:273–86.

    Article  PubMed  Google Scholar 

  48. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cargo C, Cullen M, Taylor J, Short M, Glover P, Van Hoppe S, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019;133:1325–34.

    Article  CAS  PubMed  Google Scholar 

  50. Schuler E, Frank F, Hildebrandt B, Betz B, Strupp C, Rudelius M, et al. Myelodysplastic syndromes without peripheral monocytosis but with evidence of marrow monocytosis share clinical and molecular characteristics with CMML. Leuk Res. 2018;65:1–4.

    Article  CAS  PubMed  Google Scholar 

  51. Selimoglu-Buet D, Badaoui B, Benayoun E, Toma A, Fenaux P, Quesnel B, et al. Accumulation of classical monocytes defines a subgroup of MDS that frequently evolves into CMML. Blood. 2017;130:832–5.

    Article  CAS  PubMed  Google Scholar 

  52. Talati C, Zhang L, Shaheen G, Kuykendall A, Ball M, Zhang Q, et al. Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129:1881–3.

    Article  CAS  PubMed  Google Scholar 

  53. Meggendorfer M, Jeromin S, Haferlach C, Kern W, Haferlach T. The mutational landscape of 18 investigated genes clearly separates four subtypes of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2018;103:e192–e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barraco D, Cerquozzi S, Gangat N, Patnaik MM, Lasho T, Finke C, et al. Monocytosis in polycythemia vera: Clinical and molecular correlates. Am J Hematol. 2017;92:640–5.

    Article  CAS  PubMed  Google Scholar 

  55. Elliott MA, Verstovsek S, Dingli D, Schwager SM, Mesa RA, Li CY, et al. Monocytosis is an adverse prognostic factor for survival in younger patients with primary myelofibrosis. Leuk Res. 2007;31:1503–9.

    Article  CAS  PubMed  Google Scholar 

  56. Boiocchi L, Espinal-Witter R, Geyer JT, Steinhilber J, Bonzheim I, Knowles DM, et al. Development of monocytosis in patients with primary myelofibrosis indicates an accelerated phase of the disease. Mod Pathol. 2013;26:204–12.

    Article  CAS  PubMed  Google Scholar 

  57. Wang SA, Tam W, Tsai AG, Arber DA, Hasserjian RP, Geyer JT, et al. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol. 2016;29:854–64.

    Article  CAS  PubMed  Google Scholar 

  58. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick H, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol. 1994;87:746–54.

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Wang F, Wang Z, Li Y, Wang D, Wu H, et al. p210(BCR-ABL1)- chronic myeloid leukemia presents with monocytosis. Clin Case Rep. 2020;8:840–2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gatti A, Movilia A, Roncoroni L, Citro A, Marinoni S, Brando B. Chronic myeloid leukemia with P190 BCR-ABL translocation and persistent moderate monocytosis: a case report. J Hematol. 2018;7:120–3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dass J, Jain S, Tyagi S, Sazawal S. Chronic myeloid leukemia with p210 BCR-ABL and monocytosis. Leuk Lymphoma. 2011;52:1380–1.

    Article  PubMed  Google Scholar 

  62. Patnaik MM, Timm MM, Vallapureddy R, Lasho TL, Ketterling RP, Gangat N, et al. Flow cytometry based monocyte subset analysis accurately distinguishes chronic myelomonocytic leukemia from myeloproliferative neoplasms with associated monocytosis. Blood Cancer J. 2017;7:e584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patnaik MM, Lasho TL, Finke CM, Pardanani A, Tefferi A. Targeted next generation sequencing of PDGFRB rearranged myeloid neoplasms with monocytosis. Am J Hematol. 2016;91:E12–4.

    Article  PubMed  Google Scholar 

  64. Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–7.

    Article  CAS  PubMed  Google Scholar 

  65. Liu Y, Mi X, Gadde R, Gao Q, Xiao W, Zhang Y, et al. FGFR1 Rearrangement guides diagnosis and treatment of a trilineage B, T, and myeloid mixed phenotype acute leukemia. JCO Precis Oncol. 2020;4.

  66. Kumar KR, Chen W, Koduru PR, Luu HS. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: a case report and review of literature. Am J Clin Pathol. 2015;143:738–48.

    Article  CAS  PubMed  Google Scholar 

  67. Kasbekar M, Nardi V, Dal Cin P, Brunner AM, Burke M, Chen YB, et al. Targeted FGFR inhibition results in a durable remission in an FGFR1-driven myeloid neoplasm with eosinophilia. Blood Adv. 2020;4:3136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bain BJ, Ahmad S. Should myeloid and lymphoid neoplasms with PCM1-JAK2 and other rearrangements of JAK2 be recognized as specific entities? Br J Haematol. 2014;166:809–17.

    Article  CAS  Google Scholar 

  69. Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med. 2002;347:481–7.

    Article  CAS  PubMed  Google Scholar 

  70. Bain BJ. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica. 2010;95:696–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Metzgeroth G, Schwaab J, Gosenca D, Fabarius A, Haferlach C, Hochhaus A, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. Leukemia. 2013;27:2254–6.

    Article  CAS  PubMed  Google Scholar 

  72. Meggendorfer M, Haferlach C, Zenger M, Macijewski K, Kern W, Haferlach T. The landscape of myeloid neoplasms with isochromosome 17q discloses a specific mutation profile and is characterized by an accumulation of prognostically adverse molecular markers. Leukemia. 2016;30:1624–7.

    Article  CAS  PubMed  Google Scholar 

  73. McClure RF, Dewald GW, Hoyer JD, Hanson CA. Isolated isochromosome 17q: a distinct type of mixed myeloproliferative disorder/myelodysplastic syndrome with an aggressive clinical course. Br J Haematol. 1999;106:445–54.

    Article  CAS  PubMed  Google Scholar 

  74. Kanagal-Shamanna R, Bueso-Ramos CE, Barkoh B, Lu G, Wang S, Garcia-Manero G, et al. Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. Cancer. 2012;118:2879–88.

    Article  CAS  PubMed  Google Scholar 

  75. Kanagal-Shamanna R, Luthra R, Yin CC, Patel KP, Takahashi K, Lu X, et al. Myeloid neoplasms with isolated isochromosome 17q demonstrate a high frequency of mutations in SETBP1, SRSF2, ASXL1 and NRAS. Oncotarget. 2016;7:14251–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code Availability

Not applicable.

Availability of Data and Material

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R.M.S. and A.M.Z. conceptualized and wrote the manuscript.

Corresponding author

Correspondence to Amer M. Zeidan.

Ethics declarations

Conflict of Interest

A.M.Z. received research funding (institutional) from Celgene, Acceleron, Abbvie, Otsuka, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene, Incyte, Takeda, and ADC Therapeutics. A.M.Z had a consultancy with and received honoraria from AbbVie, Otsuka, Pfizer, Celgene, Ariad, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Astellas, Daiichi Sankyo, Cardinal Health, Seattle Genetics, BeyondSpring, and Takeda. None of these relationships were related to the development of this manuscript. All other authors report no relevant disclosures/competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myelodysplastic Syndromes and MPN/MDS Overlap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shallis, R.M., Siddon, A.J. & Zeidan, A.M. Clinical and Molecular Approach to Adult-Onset, Neoplastic Monocytosis. Curr Hematol Malig Rep 16, 276–285 (2021). https://doi.org/10.1007/s11899-021-00632-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00632-6

Keywords

Navigation