Skip to main content

Advertisement

Log in

Laboratory Evaluation and Pathological Workup of Neoplastic Monocytosis — Chronic Myelomonocytic Leukemia and Beyond

  • Myelodysplastic Syndromes and MPN/MDS Overlap (M Patnaik, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Monocytosis is a distinct but non-specific manifestation of various physiologic and pathologic conditions. Among hematopoietic stem cell neoplasms, depending on the criteria used for disease classification, monocytosis may be a consistent and integral component of diseases such as chronic myelomonocytic leukemia or acute myeloid leukemia with monocytic differentiation, or it may represent an inconsistent finding that often provides a clue to the underlying genetic changes driving the neoplasm. The purpose of this review is to provide the readers with a laboratory-based approach to neoplastic monocytosis.

Recent Findings

In-depth elucidation of the genomic landscape of myeloid neoplasms within the past few years has broadened our understanding of monocytosis and its implications for diagnosis and prognosis. Genetic findings also shed light on potential disease response — or lack thereof — to various therapeutic agents used in the setting of myeloid neoplasms.

Summary

In this review, we provide our approach to diagnose neoplastic monocytosis in the context of case-based studies while incorporating the most recent literature on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lynch DT, Hall J, Foucar K. How I investigate monocytosis. Int J Lab Hematol. 2018;40(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  2. Goasguen JE, Bennett JM, Bain BJ, Vallespi T, Brunning R, Mufti GJ, et al. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94(7):994–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO Classification of tumours of haematopoietic and lymphoid tissues. Revised 4th Edition ed. Lyon: IARC; 2017.

    Google Scholar 

  4. Orazi A, Bennett JM, Germing U, Brunning R, Bain B, Cazzola M, et al. Chronic myelomonocytic leukemia. In: Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber D, Hasserjian PH, Le Beau MM, Orazi A, Siebert R, editors. WHO classification of tumours of haematopoietic and lymhoid tissues. Lyon: International Agency for Research on Cancer; 2017. p. 82–6.

    Google Scholar 

  5. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005–15.

    Article  CAS  PubMed  Google Scholar 

  6. Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.

    Article  CAS  PubMed  Google Scholar 

  7. Loghavi S, Sui D, Wei P, Garcia-Manero G, Pierce S, Routbort MJ, et al. Validation of the 2017 revision of the WHO chronic myelomonocytic leukemia categories. Blood Adv. 2018;2(15):1807–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Droin N, Jacquel A, Hendra JB, Racoeur C, Truntzer C, Pecqueur D, et al. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood. 2010;115(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  9. Loghavi S, Curry JL, Garcia-Manero G, Patel KP, Xu J, Khoury JD, et al. Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: expanding the spectrum of skin lesions in chronic myelomonocytic leukemia. J Cutan Pathol. 2017;44(12):1075–9.

    Article  PubMed  Google Scholar 

  10. Shen Q, Ouyang J, Tang G, Jabbour EJ, Garcia-Manero G, Routbort M, et al. Flow cytometry immunophenotypic findings in chronic myelomonocytic leukemia and its utility in monitoring treatment response. Eur J Haematol. 2015;95(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  11. Dunphy CH, Orton SO, Mantell J. Relative contributions of enzyme cytochemistry and flow cytometric immunophenotyping to the evaluation of acute myeloid leukemias with a monocytic component and of flow cytometric immunophenotyping to the evaluation of absolute monocytoses. Am J Clin Pathol. 2004;122(6):865–74.

    Article  PubMed  Google Scholar 

  12. Kampalath B, Cleveland RP, Chang CC, Kass L. Monocytes with altered phenotypes in posttrauma patients. Arch Pathol Lab Med. 2003;127(12):1580–5.

    Article  PubMed  Google Scholar 

  13. Xu Y, McKenna RW, Karandikar NJ, Pildain AJ, Kroft SH. Flow cytometric analysis of monocytes as a tool for distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Am J Clin Pathol. 2005;124(5):799–806.

    Article  PubMed  Google Scholar 

  14. Selimoglu-Buet D, Wagner-Ballon O, Saada V, Bardet V, Itzykson R, Bencheikh L, et al. Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125(23):3618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115(3):e10–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res. 2012;53(1-3):41–57.

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–80.

    Article  CAS  PubMed  Google Scholar 

  19. Talati C, Zhang L, Shaheen G, Kuykendall A, Ball M, Zhang Q, et al. Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129(13):1881–3.

    Article  CAS  PubMed  Google Scholar 

  20. Patnaik MM, Timm MM, Vallapureddy R, Lasho TL, Ketterling RP, Gangat N, et al. Flow cytometry based monocyte subset analysis accurately distinguishes chronic myelomonocytic leukemia from myeloproliferative neoplasms with associated monocytosis. Blood Cancer J. 2017;7(7):e584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pophali PA, Timm MM, Mangaonkar AA, Shi M, Reichard K, Tefferi A, et al. Practical limitations of monocyte subset repartitioning by multiparametric flow cytometry in chronic myelomonocytic leukemia. Blood Cancer J. 2019;9(9):65.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Such E, Cervera J, Costa D, Sole F, Vallespi T, Luno E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83.

    Article  PubMed  Google Scholar 

  23. Tang G, Zhang L, Fu B, Hu J, Lu X, Hu S, et al. Cytogenetic risk stratification of 417 patients with chronic myelomonocytic leukemia from a single institution. Am J Hematol. 2014;89(8):813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wassie EA, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89(12):1111–5.

    Article  CAS  PubMed  Google Scholar 

  25. Palomo L, Xicoy B, Garcia O, Mallo M, Adema V, Cabezon M, et al. Impact of SNP array karyotyping on the diagnosis and the outcome of chronic myelomonocytic leukemia with low risk cytogenetic features or no metaphases. Am J Hematol. 2016;91(2):185–92.

    Article  CAS  PubMed  Google Scholar 

  26. Fugazza G, Bruzzone R, Dejana AM, Gobbi M, Ghio R, Patrone F, et al. Cytogenetic clonality in chronic myelomonocytic leukemia studied with fluorescence in situ hybridization. Leukemia. 1995;9(1):109–14.

    CAS  PubMed  Google Scholar 

  27. Loghavi S, Khoury JD. Recent updates on chronic myelomonocytic leukemia. Curr Hematol Malignancy Rep. 2018;13(6):446–54.

    Article  Google Scholar 

  28. Quesada AE, Routbort MJ, DiNardo CD, Bueso-Ramos CE, Kanagal-Shamanna R, Khoury JD, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019;94(7):757–66.

    CAS  PubMed  Google Scholar 

  29. Malcovati L, Papaemmanuil E, Ambaglio I, Elena C, Galli A, Della Porta MG, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124(9):1513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118(14):3932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deininger MWN, Tyner JW, Solary E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer. 2017;17(7):425–40.

    Article  CAS  PubMed  Google Scholar 

  32. Patel BJ, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31(12):2815–23.

    Article  CAS  PubMed  Google Scholar 

  33. Patnaik MM, Vallapureddy R, Lasho TL, Hoversten KP, Finke CM, Ketterling R, et al. EZH2 mutations in chronic myelomonocytic leukemia cluster with ASXL1 mutations and their co-occurrence is prognostically detrimental. Blood Cancer J. 2018;8(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cui Y, Tong H, Du X, Li B, Gale RP, Qin T, et al. Impact of TET2, SRSF2, ASXL1 and SETBP1 mutations on survival of patients with chronic myelomonocytic leukemia. Exp Hematol Oncol. 2015;4:14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elena C, Galli A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coltro G, Mangaonkar AA, Lasho TL, Finke CM, Pophali P, Carr R, et al. Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia. 2020;34(5):1407–21.

    Article  CAS  PubMed  Google Scholar 

  37. Geyer JT, Tam W, Liu YC, Chen Z, Wang SA, Bueso-Ramos C, et al. Oligomonocytic chronic myelomonocytic leukemia (chronic myelomonocytic leukemia without absolute monocytosis) displays a similar clinicopathologic and mutational profile to classical chronic myelomonocytic leukemia. Modern Pathol : an official journal of the United States and Canadian Academy of Pathology, Inc. 2017;30(9):1213–22.

    Article  CAS  Google Scholar 

  38. Schuler E, Frank F, Hildebrandt B, Betz B, Strupp C, Rudelius M, et al. Myelodysplastic syndromes without peripheral monocytosis but with evidence of marrow monocytosis share clinical and molecular characteristics with CMML. Leuk Res. 2018;65:1–4.

    Article  CAS  PubMed  Google Scholar 

  39. Valent P, Orazi A, Savona MR, Patnaik MM, Onida F, van de Loosdrecht AA, et al. Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica. 2019;104(10):1935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cargo C, Cullen M, Taylor J, Short M, Glover P, Van Hoppe S, et al. The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019;133(12):1325–34.

    Article  CAS  PubMed  Google Scholar 

  41. Cazzola M. Clonal monocytosis of clinical significance. Blood. 2019;133(12):1271–2.

    Article  CAS  PubMed  Google Scholar 

  42. Gur HD, Loghavi S, Garcia-Manero G, Routbort M, Kanagal-Shamanna R, Quesada A, et al. Chronic myelomonocytic leukemia with fibrosis is a distinct disease subset with myeloproliferative features and frequent JAK2 p.V617F Mutations. Am J Surg Pathol. 2018;42(6):799–806.

    Article  PubMed  Google Scholar 

  43. Loghavi S, Al-Ibraheemi A, Zuo Z, Garcia-Manero G, Yabe M, Wang SA, et al. TP53 overexpression is an independent adverse prognostic factor in de novo myelodysplastic syndromes with fibrosis. Br J Haematol. 2015;171(1):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu Z, Ramos CEB, Medeiros LJ, Zhao C, Yin CC, Li S, et al. Utility of JAK2 V617F allelic burden in distinguishing chronic myelomonocytic Leukemia from primary myelofibrosis with monocytosis. Hum Pathol. 2019;85:290–8.

    Article  CAS  PubMed  Google Scholar 

  45. Wudhikarn K, Loghavi S, Mangaonkar AA, Al-Kali A, Binder M, Carr R, et al. SF3B1-mutant CMML defines a predominantly dysplastic CMML subtype with a superior acute leukemia-free survival. Blood Adv. 2020;4(22):5716–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buradkar A, Bezerra E, Coltro G, Lasho TL, Finke CM, Gangat N, et al. Landscape of RAS pathway mutations in patients with myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a study of 461 molecularly annotated patients. Leukemia. 2020;35:644–9.

    Article  PubMed  Google Scholar 

  47. Horny HP, Akin C, Arber DA, Peterson LC, Tefferi A, Metcalfe DD, et al. Mastocytosis. In: Swerdlow SHCE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber D, Hasserjian PH, Le Beau MM, Orazi A, Siebert R, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2017. p. 62–9.

    Google Scholar 

  48. Patnaik MM, Rangit V, Lasho TL, Hoversten KP, Finke CM, Ketterling RP, et al. A comparison of clinical and molecular characteristics of patients with systemic mastocytosis with chronic myelomonocytic leukemia to CMML alone. Leukemia. 2018;32(8):1850–6.

    Article  PubMed  Google Scholar 

  49. Sperr WR, Horny HP, Valent P. Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol. 2002;127(2):140–2.

    Article  CAS  PubMed  Google Scholar 

  50. Wang SA, Hutchinson L, Tang G, Chen SS, Miron PM, Huh YO, et al. Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease: clinical significance and comparison of chomosomal abnormalities in SM and AHNMD components. Am J Hematol. 2013;88(3):219–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sotlar K, Fridrich C, Mall A, Jaussi R, Bultmann B, Valent P, et al. Detection of c-kit point mutation Asp-816 --> Val in microdissected pooled single mast cells and leukemic cells in a patient with systemic mastocytosis and concomitant chronic myelomonocytic leukemia. Leuk Res. 2002;26(11):979–84.

    Article  CAS  PubMed  Google Scholar 

  52. Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374(26):2530–41.

    Article  CAS  PubMed  Google Scholar 

  53. Hu Z, Sun T. Blastic plasmacytoid dendritic cell neoplasm associated with chronic myelomonocytic leukemia. Blood. 2016;128(12):1664.

    Article  CAS  PubMed  Google Scholar 

  54. Sukswai N, Aung PP, Yin CC, Li S, Wang W, Wang SA, et al. Dual expression of TCF4 and CD123 Is highly sensitive and specific for blastic plasmacytoid dendritic cell neoplasm. Am J Surg Pathol. 2019;43(10):1429–37.

    Article  PubMed  Google Scholar 

  55. Mangaonkar AA, Reichard KK, Binder M, Coltro G, Lasho TL, Carr RM, et al. Bone marrow dendritic cell aggregates associate with systemic immune dysregulation in chronic myelomonocytic leukemia. Blood Adv. 2020;4(21):5425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lucas N, Duchmann M, Rameau P, Noel F, Michea P, Saada V, et al. Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia. 2019;33(10):2466–80.

    Article  CAS  PubMed  Google Scholar 

  57. Wang W, Khoury JD, Miranda RN, Jorgensen JL, Xu J, Loghavi S, Li S, Pemmaraju N, Nguyen T, Medeiros LJ, Wang SA Immunophenotypic characterization of reactive and neoplastic plasmacytoid dendritic cells permits establishment of a 10-color flow cytometric panel for initial workup and residual disease evaluation of blastic plasmacytoid dendritic cell neoplasm. Haematologica. 2020, haematol.2020.247569.

  58. Patnaik MM, Vallapureddy R, Yalniz FF, Hanson CA, Ketterling RP, Lasho TL, et al. Therapy related-chronic myelomonocytic leukemia (CMML): molecular, cytogenetic, and clinical distinctions from de novo CMML. Am J Hematol. 2018;93(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  59. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(1):97–115.

    Article  CAS  PubMed  Google Scholar 

  60. Patnaik MM, Pierola AA, Vallapureddy R, Yalniz FF, Kadia TM, Jabbour EJ, et al. Blast phase chronic myelomonocytic leukemia: Mayo-MDACC collaborative study of 171 cases. Leukemia. 2018;32(11):2512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Patnaik MM, Lasho TL, Finke CM, Pardanani A, Tefferi A. Targeted next generation sequencing of PDGFRB rearranged myeloid neoplasms with monocytosis. Am J Hematol. 2016;91(3):E12–4.

    Article  PubMed  Google Scholar 

  62. Gupta SK, Jain N, Tang G, Futreal A, Wang SA, Khoury JD, et al. A cryptic BCR-PDGFRB fusion resulting in a chronic myeloid neoplasm with monocytosis and eosinophilia: a novel finding With treatment implications. J Natl Compr Cancer Netw. 2020;18(10):1300–4.

    Article  CAS  Google Scholar 

  63. Fang H, Tang G, Loghavi S, Greipp P, Wang W, Verstovsek S, et al. Systematic use of fluorescence in-situ hybridisation and clinicopathological features in the screening of PDGFRB rearrangements of patients with myeloid/lymphoid neoplasms. Histopathology. 2020;76(7):1042–54.

    Article  PubMed  Google Scholar 

  64. Helbig G, Stella-Holowiecka B, Grosicki S, Bober G, Krawczyk M, Wojnar J, et al. The results of imatinib therapy for patients with primary eosinophilic disorders. Eur J Haematol. 2006;76(6):535–6.

    Article  PubMed  Google Scholar 

  65. Shah S, Loghavi S, Garcia-Manero G, Khoury JD. Discovery of imatinib-responsive FIP1L1-PDGFRA mutation during refractory acute myeloid leukemia transformation of chronic myelomonocytic leukemia. J Hematol Oncol. 2014;7:26.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lasho T, Patnaik MM. Juvenile myelomonocytic leukemia - a bona fide RASopathy syndrome. Best Pract Res Clin Haematol. 2020;33(2):101171.

    Article  PubMed  Google Scholar 

  67. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rose D, Haferlach T, Schnittger S, Perglerova K, Kern W, Haferlach C. Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia. 2017;31(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  69. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383(7):617–29.

    Article  CAS  PubMed  Google Scholar 

  70. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10(4):536–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuusanmaki H, Leppa AM, Polonen P, Kontro M, Dufva O, Deb D, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105(3):708–20.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang H, Nakauchi Y, Kohnke T, Stafford M, Bottomly D, Thomas R, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat Can. 2020;1(8):826–39.

    Article  Google Scholar 

  73. Dass J, Jain S, Tyagi S, Sazawal S. Chronic myeloid leukemia with p210 BCR-ABL and monocytosis. Leuk Lymphoma. 2011;52(7):1380–1.

    Article  PubMed  Google Scholar 

  74. Boiocchi L, Espinal-Witter R, Geyer JT, Steinhilber J, Bonzheim I, Knowles DM, et al. Development of monocytosis in patients with primary myelofibrosis indicates an accelerated phase of the disease. Modern Pathol : an official journal of the United States and Canadian Academy of Pathology, Inc. 2013;26(2):204–12.

    Article  CAS  Google Scholar 

  75. Chapman J, Geyer JT, Khanlari M, Moul A, Casas C, Connor ST, et al. Myeloid neoplasms with features intermediate between primary myelofibrosis and chronic myelomonocytic leukemia. Modern Pathol: an official journal of the United States and Canadian Academy of Pathology, Inc. 2018;31(3):429–41.

    Article  CAS  Google Scholar 

  76. Barraco D, Cerquozzi S, Gangat N, Patnaik MM, Lasho T, Finke C, et al. Monocytosis in polycythemia vera: clinical and molecular correlates. Am J Hematol. 2017;92(7):640–5.

    Article  CAS  PubMed  Google Scholar 

  77. Elliott MA, Verstovsek S, Dingli D, Schwager SM, Mesa RA, Li CY, et al. Monocytosis is an adverse prognostic factor for survival in younger patients with primary myelofibrosis. Leuk Res. 2007;31(11):1503–9.

    Article  CAS  PubMed  Google Scholar 

  78. Beran M, Shen Y, Onida F, Wen S, Kantarjian H, Estey E. Prognostic significance of monocytosis in patients with myeloproliferative disorders. Leuk Lymphoma. 2006;47(3):417–23.

    Article  PubMed  Google Scholar 

  79. Reale MA, Yen Y, Strair RK, Flynn SD, Cooper DL. Pseudoleukemia after granulocyte colony-stimulating factor therapy. South Med J. 1995;88(4):462–4.

    Article  CAS  PubMed  Google Scholar 

  80. Liu CZ, Persad R, Inghirami G, Sen F, Amorosi E, Goldenberg A, et al. Transient atypical monocytosis mimic acute myelomonocytic leukemia in post-chemotherapy patients receiving G-CSF: report of two cases. Clin Lab Haematol. 2004;26(5):359–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanam Loghavi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myelodysplastic Syndromes and MPN/MDS Overlap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hussein, S., Khoury, J.D., Medeiros, L.J. et al. Laboratory Evaluation and Pathological Workup of Neoplastic Monocytosis — Chronic Myelomonocytic Leukemia and Beyond. Curr Hematol Malig Rep 16, 286–303 (2021). https://doi.org/10.1007/s11899-021-00625-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-021-00625-5

Keywords

Navigation