Skip to main content

Advertisement

Log in

New Approaches to Treating Challenging Subtypes of ALL in AYA Patients

  • Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The treatment of acute lymphoblastic leukemia (ALL) in adolescent and young adult (AYA) patients has markedly improved with the adoption of pediatric-inspired protocols. However, there remain several subtypes of ALL that represent significant therapeutic challenges. Here, we review the current evidence guiding treatment of Philadelphia chromosome-positive (Ph+), Philadelphia chromosome-like (Ph-L), and early T-precursor (ETP) ALL in the AYA population.

Recent Findings

Clinical trials in Ph + ALL have demonstrated the superior efficacy of second- and third-generation tyrosine kinase inhibitors (TKIs) to induce and maintain remission. Current efforts now focus on determining the durability of these remissions and which patients will benefit from transplant. For Ph-like and ETP ALL, recent studies are investigating the addition of novel agents to standard treatment.

Summary

The treatment of Ph + ALL has significantly improved with the addition of potent TKIs. However, the treatment of Ph-like and ETP ALL remains a challenge. At this time, the judicious use of allogenic transplant is the only current approach to modify this increased risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Siegel SE, Stock W, Johnson RH, Advani A, Muffly L, Douer D, et al. Pediatric-inspired treatment regimens for adolescents and young adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: a review. JAMA Oncol. 2018;4(5):725–34. https://doi.org/10.1001/jamaoncol.2017.5305This review summarizes strong retrospective data supporting the use of pediatric inspired chemotherapy regimens in the treatment of AYA ALL.

    Article  PubMed  PubMed Central  Google Scholar 

  2. •• DeAngelo DJ, Stevenson KE, Dahlberg SE, Silverman LB, Couban S, Supko JG, et al. Long-term outcome of a pediatric-inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29(3):526–34. https://doi.org/10.1038/leu.2014.229Prospective trial that shows improved survival with pediatric inspired chemotherapy regimens for AYA patients with newly diagnosed ALL.

    Article  CAS  PubMed  Google Scholar 

  3. •• Toft N, Birgens H, Abrahamsson J, Griskevicius L, Hallbook H, Heyman M, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–15. https://doi.org/10.1038/leu.2017.265Prospective trial that shows improved survival with pediatric inspired chemotherapy regimens for AYA patients with newly diagnosed ALL.

    Article  CAS  PubMed  Google Scholar 

  4. •• Stock W, Luger SM, Advani AS, Yin J, Harvey RC, Mullighan CG, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59. https://doi.org/10.1182/blood-2018-10-881961Prospective trial that shows improved survival with pediatric inspired chemotherapy regimens for AYA patients with newly diagnosed ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rizzari C, Putti MC, Colombini A, Casagranda S, Ferrari GM, Papayannidis C, et al. Rationale for a pediatric-inspired approach in the adolescent and young adult population with acute lymphoblastic leukemia, with a focus on asparaginase treatment. Hematol Rep. 2014;6(3):5554. https://doi.org/10.4081/hr.2014.5554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Derman BA, Streck M, Wynne J, Christ TN, Curran E, Stock W, et al. Efficacy and toxicity of reduced vs. standard dose pegylated asparaginase in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. Leuk Lymphoma. 2020;61(3):614–22. https://doi.org/10.1080/10428194.2019.1680839.

    Article  CAS  PubMed  Google Scholar 

  7. • Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3(7):e170580. https://doi.org/10.1001/jamaoncol.2017.0580This meta-analysis highlights the significance of achieving minimal residual disease (MRD) in the treatment of ALL.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gokbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. https://doi.org/10.1182/blood-2017-08-798322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muffly L, Alvarez E, Lichtensztajn D, Abrahao R, Gomez SL, Keegan T. Patterns of care and outcomes in adolescent and young adult acute lymphoblastic leukemia: a population-based study. Blood Adv. 2018;2(8):895–903. https://doi.org/10.1182/bloodadvances.2017014944.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang AY, Muffly LS, Stock W. Philadelphia chromosome-negative b-cell acute lymphoblastic leukemia in adolescents and young adults. JCO Oncol Pract. 2020;16:231–8. JOP1900197. https://doi.org/10.1200/JOP.19.00197.

    Article  PubMed  Google Scholar 

  11. Allen A, Sireci A, Colovai A, Pinkney K, Sulis M, Bhagat G, et al. Early T-cell precursor leukemia/lymphoma in adults and children. Leuk Res. 2013;37(9):1027–34. https://doi.org/10.1016/j.leukres.2013.06.010.

    Article  PubMed  Google Scholar 

  12. Wang XX, Wu D, Zhang L. Clinical and molecular characterization of early T-cell precursor acute lymphoblastic leukemia: two cases report and literature review. Medicine (Baltimore). 2018;97(52):e13856. https://doi.org/10.1097/MD.0000000000013856.

    Article  Google Scholar 

  13. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. https://doi.org/10.1016/S1470-2045(08)70314-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Inukai T, Kiyokawa N, Campana D, Coustan-Smith E, Kikuchi A, Kobayashi M, et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo children’s cancer study group study L99-15. Br J Haematol. 2012;156(3):358–65. https://doi.org/10.1111/j.1365-2141.2011.08955.x.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63. https://doi.org/10.1038/nature10725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol. 2015;144(3):411–22. https://doi.org/10.1309/AJCPMF03LVSBLHPJ.

    Article  CAS  PubMed  Google Scholar 

  17. Jain N, Lamb AV, O'Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9. https://doi.org/10.1182/blood-2015-08-661702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A, Selvanathan A, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood. 2015;125(11):1759–67. https://doi.org/10.1182/blood-2014-06-580480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumann M, Coskun E, Fransecky L, Mochmann LH, Bartram I, Sartangi NF, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors. PLoS One. 2013;8(1):e53190. https://doi.org/10.1371/journal.pone.0053190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015;126(7):833–41. https://doi.org/10.1182/blood-2014-10-551895.

    Article  CAS  PubMed  Google Scholar 

  21. De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev. 2019;38:100591. https://doi.org/10.1016/j.blre.2019.100591.

    Article  CAS  PubMed  Google Scholar 

  22. Czuchlewski DR, Foucar K. Early T-cell precursor acute lymphoblastic leukemia/lymphoma. Surg Pathol Clin. 2013;6(4):661–76. https://doi.org/10.1016/j.path.2013.08.002.

    Article  PubMed  Google Scholar 

  23. •• Bond J, Graux C, Lhermitte L, Lara D, Cluzeau T, Leguay T, et al. Early response-based therapy stratification improves survival in adult early thymic precursor acute lymphoblastic leukemia: a group for research on adult acute lymphoblastic leukemia study. J Clin Oncol. 2017;35(23):2683–91. https://doi.org/10.1200/JCO.2016.71.8585Study showing alloSCT in CR1 may overcome the high-risk features of ETP ALL in the adult population.

    Article  CAS  PubMed  Google Scholar 

  24. Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4. https://doi.org/10.1111/bjh.12882.

    Article  CAS  PubMed  Google Scholar 

  25. • Sayed DM, Sayed HAR, Raslan HN, Ali AM, Zahran A, Al-Hayek R, et al. Outcome and clinical significance of immunophenotypic markers expressed in different treatment protocols of pediatric patients with T-ALL in developing countries. Clin Lymphoma Myeloma Leuk. 2017;17(7):443–9. https://doi.org/10.1016/j.clml.2017.05.012Study showing that risk-stratified treatment intensification may overcome the high-risk features of ETP ALL in the pediatric population.

    Article  PubMed  Google Scholar 

  26. Brammer JE, Saliba RM, Jorgensen JL, Ledesma C, Gaballa S, Poon M, et al. Multi-center analysis of the effect of T-cell acute lymphoblastic leukemia subtype and minimal residual disease on allogeneic stem cell transplantation outcomes. Bone Marrow Transplant. 2017;52(1):20–7. https://doi.org/10.1038/bmt.2016.194.

    Article  CAS  PubMed  Google Scholar 

  27. Advani AS, Hanna R. The treatment of adolescents and young adults with acute lymphoblastic leukemia. Leuk Lymphoma. 2020;61(1):18–26. https://doi.org/10.1080/10428194.2019.1658103.

    Article  CAS  PubMed  Google Scholar 

  28. Carreras E, Dufour C, Mohty M, Kroger N. The EBMT Handbook. 2019.

  29. Rytting ME, Jabbour EJ, O'Brien SM, Kantarjian HM. Acute lymphoblastic leukemia in adolescents and young adults. Cancer. 2017;123(13):2398–403. https://doi.org/10.1002/cncr.30624.

    Article  PubMed  Google Scholar 

  30. Curran E, Stock W. How I treat acute lymphoblastic leukemia in older adolescents and young adults. Blood. 2015;125(24):3702–10. https://doi.org/10.1182/blood-2014-11-551481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Orellana-Noia VM, Douvas MG. Recent developments in adolescent and young adult (AYA) acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2018;13(2):100–8. https://doi.org/10.1007/s11899-018-0442-1.

    Article  PubMed  Google Scholar 

  32. McMahon CM, Luger SM, Relapsed T. cell ALL: current approaches and new directions. Curr Hematol Malig Rep. 2019;14(2):83–93. https://doi.org/10.1007/s11899-019-00501-3.

    Article  PubMed  Google Scholar 

  33. Padi SKR, Luevano LA, An N, Pandey R, Singh N, Song JH, et al. Targeting the PIM protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget. 2017;8(18):30199–216. https://doi.org/10.18632/oncotarget.16320.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lacayo NJ, Pullarkat VA, Stock W, Jabbour E, Bajel A, Rubnitz J, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019;134(Supplement_1):285. https://doi.org/10.1182/blood-2019-126977.

    Article  Google Scholar 

  35. Slayton WB, Schultz KR, Kairalla JA, Devidas M, Mi X, Pulsipher MA, et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of children’s oncology group trial AALL0622. J Clin Oncol. 2018;36(22):2306–14. https://doi.org/10.1200/JCO.2017.76.7228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Chang J, Douer D, Aldoss I, Vahdani G, Jeong AR, Ghaznavi Z, et al. Combination chemotherapy plus dasatinib leads to comparable overall survival and relapse-free survival rates as allogeneic hematopoietic stem cell transplantation in Philadelphia positive acute lymphoblastic leukemia. Cancer Med. 2019;8(6):2832–9. https://doi.org/10.1002/cam4.2153Study comparing outcomes of adult Ph+ ALL patients treated with dasatinib + combination chemotherapy to dasatinib + combination chemotherapy followed by alloSCT. Study showed similar outcomes between the transplant and non-transplant group, suggesting routine alloSCT in CR1 may not be indicated with the development of newer generation TKIs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abou Dalle I, Jabbour E, Short NJ, Ravandi F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Curr Treat Options in Oncol. 2019;20(1):4. https://doi.org/10.1007/s11864-019-0603-z.

    Article  Google Scholar 

  38. Lou Y, Ma Y, Li C, Suo S, Tong H, Qian W, et al. Efficacy and prognostic factors of imatinib plus CALLG2008 protocol in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Med. 2017;11(2):229–38. https://doi.org/10.1007/s11684-017-0506-y.

    Article  PubMed  Google Scholar 

  39. Ottmann O. Tyrosine kinase inhibitor therapy or transplant in children with Philadelphia chromosome-positive acute lymphoblastic leukaemia: striking the balance. Lancet Haematol. 2018;5(12):e606–e7. https://doi.org/10.1016/S2352-3026(18)30181-9.

    Article  PubMed  Google Scholar 

  40. Short NJ, Kantarjian H, Jabbour E, Ravandi F. Which tyrosine kinase inhibitor should we use to treat Philadelphia chromosome-positive acute lymphoblastic leukemia? Best Pract Res Clin Haematol. 2017;30(3):193–200. https://doi.org/10.1016/j.beha.2017.05.001.

    Article  PubMed  Google Scholar 

  41. Ronson A, Tvito A, Rowe JM. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia. Curr Treat Options in Oncol. 2017;18(3):20. https://doi.org/10.1007/s11864-017-0455-3.

    Article  Google Scholar 

  42. • Ravandi F, Othus M, O'Brien SM, Forman SJ, Ha CS, Wong JYC, et al. US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in philadelphia chromosome positive ALL. Blood Adv. 2016;1(3):250–9. https://doi.org/10.1182/bloodadvances.2016001495Non-randomized study demonstrating improved outcomes in adult patients who received alloSCT in addition to dasatinib + combination chemotherapy when compared to those who did not undergo SCT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ravandi F. How I treat Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2019;133(2):130–6. https://doi.org/10.1182/blood-2018-08-832105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27(31):5175–81. https://doi.org/10.1200/JCO.2008.21.2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Jiang Q, Xu LP, Zhang XH, Chen H, Qin YZ, et al. Allogeneic stem cell transplantation versus tyrosine kinase inhibitors combined with chemotherapy in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018;24(4):741–50. https://doi.org/10.1016/j.bbmt.2017.12.777.

    Article  CAS  PubMed  Google Scholar 

  46. Candoni A, Rambaldi A, Fanin R, Velardi A, Arcese W, Ciceri F, et al. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in the era of tyrosine kinase inhibitors: a registry-based study of the Italian blood and marrow transplantation society (GITMO). Biol Blood Marrow Transplant. 2019;25(12):2388–97. https://doi.org/10.1016/j.bbmt.2019.07.037.

    Article  CAS  PubMed  Google Scholar 

  47. Chalandon Y, Thomas X, Hayette S, Cayuela JM, Abbal C, Huguet F, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711–9. https://doi.org/10.1182/blood-2015-02-627935.

    Article  CAS  PubMed  Google Scholar 

  48. Soverini S, Bassan R, Lion T. Treatment and monitoring of Philadelphia chromosome-positive leukemia patients: recent advances and remaining challenges. J Hematol Oncol. 2019;12(1):39. https://doi.org/10.1186/s13045-019-0729-2.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Shen S, Chen X, Cai J, Yu J, Gao J, Hu S, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial. JAMA Oncol. 2020. https://doi.org/10.1001/jamaoncol.2019.5868Phase III trial comparing imatinib vs dasatinib in the treatment of pediatric Ph+ ALL. Showed superiority of dasatinib over imatinib in the treatment of pediatric Ph+ ALL, suggesting newer generation TKIs may prove more effective in the treatment of Ph+ ALL when compared to first generation TKIs.

  50. •• Jabbour E, Short NJ, Ravandi F, Huang X, Daver N, DiNardo CD, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):e618–e27. https://doi.org/10.1016/S2352-3026(18)30176-5Phase II trial on ponatinib + hyper-CVAD in treatment of adult Ph+ ALL. Study showed good long term outcomes and non-inferior survival in the non-transplant vs transplant group, suggesting newer TKIs may allow for avoidance of routine alloSCT in CR1.

    Article  PubMed  Google Scholar 

  51. Hangai M, Urayama KY, Tanaka J, Kato K, Nishiwaki S, Koh K, et al. Allogeneic stem cell transplantation for acute lymphoblastic leukemia in adolescents and young adults. Biol Blood Marrow Transplant. 2019;25(8):1597–602. https://doi.org/10.1016/j.bbmt.2019.04.014.

    Article  PubMed  Google Scholar 

  52. Agrawal N, Verma P, Yadav N, Ahmed R, Mehta P, Soni P, et al. Outcome of Philadelphia positive acute lymphoblastic leukemia with or without allogeneic stem cell transplantation in a retrospective study. Indian J Hematol Blood Transfus. 2019;35(2):240–7. https://doi.org/10.1007/s12288-018-1005-2.

    Article  PubMed  Google Scholar 

  53. Yoon JH, Min GJ, Park SS, Jeon YW, Lee SE, Cho BS, et al. Minimal residual disease-based long-term efficacy of reduced-intensity conditioning versus myeloablative conditioning for adult Philadelphia-positive acute lymphoblastic leukemia. Cancer. 2019;125(6):873–83. https://doi.org/10.1002/cncr.31874.

    Article  CAS  PubMed  Google Scholar 

  54. Chiaretti S, Bassan R, Vitale A, Elia L, Piciocchi A, Puzzolo C, et al. Dasatinib-blinatumomab combination for the front-line treatment of adult Ph+ ALL patients. Updated Results of the Gimema LAL2116 D-Alba Trial. Blood. 2019;134(Supplement_1):740. https://doi.org/10.1182/blood-2019-128759.

    Article  Google Scholar 

  55. Lee S, Kim DW, Cho BS, Yoon JH, Shin SH, Yahng SA, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367–74. https://doi.org/10.1038/leu.2012.164.

    Article  CAS  PubMed  Google Scholar 

  56. Yoon JH, Yhim HY, Kwak JY, Ahn JS, Yang DH, Lee JJ, et al. Minimal residual disease-based effect and long-term outcome of first-line dasatinib combined with chemotherapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Ann Oncol. 2016;27(6):1081–8. https://doi.org/10.1093/annonc/mdw123.

    Article  PubMed  Google Scholar 

  57. Ravandi F, Jorgensen JL, Thomas DA, O'Brien S, Garris R, Faderl S, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214–21. https://doi.org/10.1182/blood-2012-11-466482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Short NJ, Jabbour E, Sasaki K, Patel K, O'Brien SM, Cortes JE, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128(4):504–7. https://doi.org/10.1182/blood-2016-03-707562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2016;2016(1):561–6. https://doi.org/10.1182/asheducation-2016.1.561.

    Article  Google Scholar 

  60. Siegele BJ, Nardi V. Laboratory testing in BCR-ABL1-like (Philadelphia-like) B-lymphoblastic leukemia/lymphoma. Am J Hematol. 2018;93(7):971–7. https://doi.org/10.1002/ajh.25126.

    Article  PubMed  Google Scholar 

  61. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130(19):2064–72. https://doi.org/10.1182/blood-2017-06-743252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan M, Siddiqi R, Tran TH. Philadelphia chromosome-like acute lymphoblastic leukemia: a review of the genetic basis, clinical features, and therapeutic options. Semin Hematol. 2018;55(4):235–41. https://doi.org/10.1053/j.seminhematol.2018.05.001.

    Article  PubMed  Google Scholar 

  63. Ofran Y, Izraeli S. BCR-ABL (Ph)-like acute leukemia-pathogenesis, diagnosis and therapeutic options. Blood Rev. 2017;31(2):11–6. https://doi.org/10.1016/j.blre.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  64. Roberts KG. Why and how to treat Ph-like ALL? Best Pract Res Clin Haematol. 2018;31(4):351–6. https://doi.org/10.1016/j.beha.2018.09.003.

    Article  PubMed  Google Scholar 

  65. Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the children’s oncology group. Blood. 2017;129(25):3352–61. https://doi.org/10.1182/blood-2016-12-758979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15. https://doi.org/10.1056/NEJMoa1403088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pui CH, Roberts KG, Yang JJ, Mullighan CG. Philadelphia chromosome-like acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2017;17(8):464–70. https://doi.org/10.1016/j.clml.2017.03.299.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wells J, Jain N, Konopleva M. Philadelphia chromosome-like acute lymphoblastic leukemia: progress in a new cancer subtype. Clin Adv Hematol Oncol. 2017;15(7):554–61.

    PubMed  Google Scholar 

  69. Roberts KG, Gu Z, Payne-Turner D, McCastlain K, Harvey RC, Chen IM, et al. High frequency and poor outcome of Philadelphia chromosome-like acute lymphoblastic leukemia in adults. J Clin Oncol. 2017;35(4):394–401. https://doi.org/10.1200/JCO.2016.69.0073.

    Article  PubMed  Google Scholar 

  70. Herold T, Schneider S, Metzeler KH, Neumann M, Hartmann L, Roberts KG, et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica. 2017;102(1):130–8. https://doi.org/10.3324/haematol.2015.136366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. • Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–81. https://doi.org/10.1182/blood-2016-07-726588Study showed poor outcomes of adults with Ph-L ALL regardless of MRD status.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prescott K, Stock W. Philadelphia chromosome-like acute lymphocytic leukemia: perspectives on diagnosis. Adv Cell Gene Ther. 2019;2(4):e69. https://doi.org/10.1002/acg2.69.

    Article  Google Scholar 

  73. Harvey RC, Tasian SK. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv. 2020;4(1):218–28. https://doi.org/10.1182/bloodadvances.2019000163.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yap KL, Furtado LV, Kiyotani K, Curran E, Stock W, McNeer JL, et al. Diagnostic evaluation of RNA sequencing for the detection of genetic abnormalities associated with Ph-like acute lymphoblastic leukemia (ALL). Leuk Lymphoma. 2017;58(4):950–8. https://doi.org/10.1080/10428194.2016.1219902.

    Article  CAS  PubMed  Google Scholar 

  75. Roberts KG, Yang YL, Payne-Turner D, Lin W, Files JK, Dickerson K, et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv. 2017;1(20):1657–71. https://doi.org/10.1182/bloodadvances.2017011296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang Q, Shi C, Han L, Jain N, Roberts KG, Ma H, et al. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget. 2018;9(8):8027–41. https://doi.org/10.18632/oncotarget.24261.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Meyer LK, Delgado-Martin C, Maude SL, Shannon KM, Teachey DT, Hermiston ML. CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition. PLoS One. 2019;14(7):e0220026. https://doi.org/10.1371/journal.pone.0220026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chiaretti S, Messina M, Foa R. BCR/ABL1-like acute lymphoblastic leukemia: how to diagnose and treat? Cancer. 2019;125(2):194–204. https://doi.org/10.1002/cncr.31848.

    Article  CAS  PubMed  Google Scholar 

  79. Weston BW, Hayden MA, Roberts KG, Bowyer S, Hsu J, Fedoriw G, et al. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6. https://doi.org/10.1200/JCO.2012.47.6770.

    Article  PubMed  Google Scholar 

  80. Lengline E, Beldjord K, Dombret H, Soulier J, Boissel N, Clappier E. Successful tyrosine kinase inhibitor therapy in a refractory B-cell precursor acute lymphoblastic leukemia with EBF1-PDGFRB fusion. Haematologica. 2013;98(11):e146–8. https://doi.org/10.3324/haematol.2013.095372.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Frech M, Jehn LB, Stabla K, Mielke S, Steffen B, Einsele H, et al. Dasatinib and allogeneic stem cell transplantation enable sustained response in an elderly patient with RCSD1-ABL1-positive acute lymphoblastic leukemia. Haematologica. 2017;102(4):e160–e2. https://doi.org/10.3324/haematol.2016.160531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perwein T, Strehl S, Konig M, Lackner H, Panzer-Grumayer R, Mann G, et al. Imatinib-induced long-term remission in a relapsed RCSD1-ABL1-positive acute lymphoblastic leukemia. Haematologica. 2016;101(8):e332–5. https://doi.org/10.3324/haematol.2015.139568.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kobayashi K, Miyagawa N, Mitsui K, Matsuoka M, Kojima Y, Takahashi H, et al. TKI dasatinib monotherapy for a patient with Ph-like ALL bearing ATF7IP/PDGFRB translocation. Pediatr Blood Cancer. 2015;62(6):1058–60. https://doi.org/10.1002/pbc.25327.

    Article  PubMed  Google Scholar 

  84. El Fakih R, Savani B, Mohty M, Aljurf M. Hematopoietic cell transplant consideration for Philadelphia chromosome-like acute lymphoblastic leukemia patients. Biol Blood Marrow Transplant. 2020;26(1):e16–20. https://doi.org/10.1016/j.bbmt.2019.08.010.

    Article  CAS  PubMed  Google Scholar 

  85. Aldoss I, Kamal MO, Forman SJ, Pullarkat V. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia: considerations for allogeneic hematopoietic cell transplantation in first complete remission. Biol Blood Marrow Transplant. 2019;25(2):e41–e5. https://doi.org/10.1016/j.bbmt.2018.09.041.

    Article  PubMed  Google Scholar 

  86. Roberts KG, Pei D, Campana D, Payne-Turner D, Li Y, Cheng C, et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol. 2014;32(27):3012–20. https://doi.org/10.1200/JCO.2014.55.4105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Frisch A, Ofran Y. How I diagnose and manage Philadelphia chromosome-like acute lymphoblastic leukemia. Haematologica. 2019;104(11):2135–43. https://doi.org/10.3324/haematol.2018.207506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heatley SL, Sadras T, Kok CH, Nievergall E, Quek K, Dang P, et al. High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica. 2017;102(12):e490–e3. https://doi.org/10.3324/haematol.2016.162925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

JW is supported by 5K12CA139160-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Wynne.

Ethics declarations

Conflict of Interest

Dr. Prescott has nothing to disclose. Dr. Jacobs has nothing to disclose. Dr. Stock reports personal fees from AMGEN, personal fees from ABBVIE, personal fees from PFIZER, personal fees from JAZZ, personal fees from ADAPTIVE BIOTECHNOLOGIES, during the conduct of the study; personal fees from ASTELLAS, personal fees from UP TO DATE, outside the submitted work. Dr. Wynne reports personal fees from Servier, outside the submitted work.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Acute Lymphocytic Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prescott, K., Jacobs, M., Stock, W. et al. New Approaches to Treating Challenging Subtypes of ALL in AYA Patients. Curr Hematol Malig Rep 15, 424–435 (2020). https://doi.org/10.1007/s11899-020-00597-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00597-y

Keywords

Navigation