Skip to main content

Artificial Intelligence in Hematology: Current Challenges and Opportunities

Abstract

Purpose of Review

Artificial intelligence (AI), and in particular its subcategory machine learning, is finding an increasing number of applications in medicine, driven in large part by an abundance of data and powerful, accessible tools that have made AI accessible to a larger circle of investigators.

Recent Findings

AI has been employed in the analysis of hematopathological, radiographic, laboratory, genomic, pharmacological, and chemical data to better inform diagnosis, prognosis, treatment planning, and foundational knowledge related to benign and malignant hematology. As more widespread implementation of clinical AI nears, attention has also turned to the effects this will have on other areas in medicine.

Summary

AI offers many promising tools to clinicians broadly, and specifically in the practice of hematology. Ongoing research into its various applications will likely result in an increasing utilization of AI by a broader swath of clinicians.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May;521(7553):436–44.

    CAS  PubMed  Google Scholar 

  2. 2.

    Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018 Nov 27;19(6):1236–46.

    PubMed  Google Scholar 

  3. 3.

    Alsuliman T, Humaidan D, Sliman L. Machine learning and artificial intelligence in the service of medicine: necessity or potentiality? Curr Res Transl Med 2020;S2452318620300192.

  4. 4.

    Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018 Mar;68(668):143–4.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019 Jan;25(1):24–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018 Aug;18(8):500–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017 May 24;60(6):84–90.

    Google Scholar 

  9. 9.

    Keel S, Lee PY, Scheetz J, Li Z, Kotowicz MA, MacIsaac RJ, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep. 2018 Dec;8(1):4330.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med. 2018 Dec;1(1):39.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67.

    CAS  PubMed  Google Scholar 

  12. 12.

    Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep. 2019 Dec;9(1):12495.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hegde RB, Prasad K, Hebbar H, Singh BMK. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern Biomed Eng. 2019 Apr;39(2):382–92.

    Google Scholar 

  14. 14.

    Kimura K, Tabe Y, Ai T, Takehara I, Fukuda H, Takahashi H, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA. Sci Rep. 2019 Dec;9(1):13385.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wang Q, Bi S, Sun M, Wang Y, Wang D, Yang S. Deep learning approach to peripheral leukocyte recognition. Zhang J, editor. PLOS ONE. 2019 Jun 25;14(6):e0218808.

  16. 16.

    Chandradevan R, Aljudi AA, Drumheller BR, Kunananthaseelan N, Amgad M, Gutman DA, et al. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. Lab Investig. 2020 Jan;100(1):98–109.

    PubMed  Google Scholar 

  17. 17.

    Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis GE. A deep convolutional neural network for classification of red blood cells in sickle cell anemia. Nie Q, editor. PLOS Comput Biol. 2017 Oct 19;13(10):e1005746.

  18. 18.

    Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Madhloom HT, Azeez ND, et al. A review of the automated detection and classification of acute leukaemia: coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput Methods Prog Biomed. 2018 May;158:93–112.

    CAS  Google Scholar 

  19. 19.

    Im H, Pathania D, McFarland PJ, Sohani AR, Degani I, Allen M, et al. Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat Biomed Eng. 2018 Sep;2(9):666–74.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson ANA, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015 Mar 17;313(11):1122–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fadi B, Luciana S, Epstein Jonathan I. The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy. J Urol. 2010 Jul 1;184(1):126–30.

    Google Scholar 

  22. 22.

    Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G, Estrov Z, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood. 2011 Oct 27;118(17):4690–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Xu L, Tetteh G, Lipkova J, Zhao Y, Li H, Christ P, et al. Automated whole-body bone lesion detection for multiple myeloma on 68 Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol Imaging. 2018;2018:1–11.

    Google Scholar 

  24. 24.

    Martínez-Martínez F, Kybic J, Lambert L, Mecková Z. Fully automated classification of bone marrow infiltration in low-dose CT of patients with multiple myeloma based on probabilistic density model and supervised learning. Comput Biol Med. 2016 Apr;71:57–66.

    PubMed  Google Scholar 

  25. 25.

    Li H, Xu C, Xin B, Zheng C, Zhao Y, Hao K, et al. 18 F-FDG PET/CT radiomic analysis with machine learning for identifying bone marrow involvement in the patients with suspected relapsed acute leukemia. Theranostics. 2019;9(16):4730–9.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Moon H, Huo Y, Abramson RG, Peters RA, Assad A, Moyo TK, et al. Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline. Comput Biol Med. 2019 Apr;107:109–17.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Milgrom SA, Elhalawani H, Lee J, Wang Q, Mohamed ASR, Dabaja BS, et al. A PET radiomics model to predict refractory mediastinal Hodgkin lymphoma. Sci Rep. 2019 Dec;9(1):1322.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Guo B, Tan X, Ke Q, Cen H. Prognostic value of baseline metabolic tumor volume and total lesion glycolysis in patients with lymphoma: a meta-analysis. PLoS One. 2019;14(1):e0210224.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Deulofeu M, Kolářová L, Salvadó V, María Peña-Méndez E, Almáši M, Štork M, et al. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Sci Rep. 2019 Dec;9(1):7975.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hilton C. Geno-Clinical Model for the diagnosis of bone marrow myeloid neoplasms. In ASH; 2019 [cited 2019 Nov 14]. Available from: https://ash.confex.com/ash/2019/webprogram/Paper126967.html

  31. 31.

    Moraes LO, Pedreira CE, Barrena S, Lopez A, Orfao A. A decision-tree approach for the differential diagnosis of chronic lymphoid leukemias and peripheral B-cell lymphomas. Comput Methods Prog Biomed. 2019 Sep;178:85–90.

    CAS  Google Scholar 

  32. 32.

    Patel SS, Sekeres MA, Nazha A. Prognostic models in predicting outcomes in myelodysplastic syndromes after hypomethylating agent failure. Leuk Lymphoma. 2017 Nov 2;58(11):2532–9.

    PubMed  Google Scholar 

  33. 33.

    Liu S, Zhang F, Xie L, Wang Y, Xiang Q, Yue Z, et al. Machine learning approaches for risk assessment of peripherally inserted central catheter-related vein thrombosis in hospitalized patients with cancer. Int J Med Inf. 2019 Sep;129:175–83.

    Google Scholar 

  34. 34.

    Arai Y, Kondo T, Fuse K, Shibasaki Y, Masuko M, Sugita J, et al. Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation. Blood Adv. 2019 Nov 26;3(22):3626–34.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Goswami C, Poonia S, Kumar L, Sengupta D. Staging system to predict the risk of relapse in multiple myeloma patients undergoing autologous stem cell transplantation. Front Oncol. 2019 Jul 12;9:633.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Nazha A, Komrokji RS, Meggendorfer M, Mukherjee S, Al Ali N, Walter W, et al. A personalized prediction model to risk stratify patients with myelodysplastic syndromes. Blood. 2018 Nov 29;132(Supplement 1):793–793.

  37. 37.

    Shreve J. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. In ASH; 2019 [cited 2019 Nov 14]. Available from: https://ash.confex.com/ash/2019/webprogram/Paper128066.html

  38. 38.

    Ni W, Hu B, Zheng C, Tong Y, Wang L, Li Q, et al. Automated analysis of acute myeloid leukemia minimal residual disease using a support vector machine. Oncotarget [Internet]. 2016 Nov 1 [cited 2019 Nov 7];7(44). Available from: http://www.oncotarget.com/fulltext/12430

  39. 39.

    Ko B-S, Wang Y-F, Li J-L, Li C-C, Weng P-F, Hsu S-C, et al. Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine. 2018 Nov;37:91–100.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Arvaniti E, Claassen M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun. 2017 Apr;8(1):14825.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sasaki K, Kantarjian HM, Jabbour E, Ravandi F, Konopleva MY, Borthakur GM, et al. The impact of treatment recommendation by Leukemia Artificial Intelligence Program (LEAP) on survival in patients with chronic myeloid leukemia in chronic phase (CML-CP). Blood. 2019 Nov 13;134(Supplement_1):1642–1642.

  42. 42.

    Chang Y, Park H, Yang H-J, Lee S, Lee K-Y, Kim TS, et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep. 2018 Dec;8(1):8857.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Mani-Varnosfaderani A, Neiband MS, Benvidi A. Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Mol Divers. 2019 Feb;23(1):55–73.

    CAS  PubMed  Google Scholar 

  44. 44.

    Nazha A, Sekeres MA, Bejar R, Rauh MJ, Othus M, Komrokji RS, et al. Genomic biomarkers to predict resistance to hypomethylating agents in patients with myelodysplastic syndromes using artificial intelligence. JCO Precis Oncol. 2019 Sep;3:1–11.

    Google Scholar 

  45. 45.

    Madanat YF, Sekeres MA, Mukherjee S, Hirsch CM, Guan Y, Nagata Y, et al. Genomic biomarkers predict response/resistance to lenalidomide in non-Del(5q) myelodysplastic syndromes. Blood. 2018 Nov 29;132(Supplement 1):1797–1797.

  46. 46.

    Lee S-I, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun. 2018 Dec;9(1):42.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Rheinbay E. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 2020;578:102–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Yakovenko O, Jones SJM. Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations. J Comput Aided Mol Des. 2018 Jan;32(1):299–311.

    CAS  PubMed  Google Scholar 

  49. 49.

    Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019 Aug;40(8):577–91.

    CAS  PubMed  Google Scholar 

  50. 50.

    Woo M. An AI boost for clinical trials. Nature. 2019 Sep 25;573:S100–2.

    CAS  PubMed  Google Scholar 

  51. 51.

    Recht M, Bryan RN. Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol. 2017 Nov;14(11):1476–80.

    PubMed  Google Scholar 

  52. 52.

    Sharma G, Carter A. Artificial intelligence and the pathologist: future frenemies? Arch Pathol Lab Med. 2017 May;141(5):622–3.

    PubMed  Google Scholar 

  53. 53.

    Pinto dos Santos D, Giese D, Brodehl S, Chon SH, Staab W, Kleinert R, et al. Medical students’ attitude towards artificial intelligence: a multicentre survey. Eur Radiol. 2019 Apr;29(4):1640–6.

    CAS  PubMed  Google Scholar 

  54. 54.

    Chen P-HC, Gadepalli K, MacDonald R, Liu Y, Kadowaki S, Nagpal K, et al. An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nat Med. 2019 Sep;25(9):1453–7.

    CAS  PubMed  Google Scholar 

  55. 55.

    Ross C, Swetlitz I. IBM pitch its Watson supercomputer as a revoltuion in cancer care. It’s nowhere close. Stat news [Internet]. 2017 Sep 5; Available from: https://www.statnews.com/2017/09/05/watson-ibm-cancer/

  56. 56.

    Schmidt C. M. D. Anderson Breaks With IBM Watson, Raising questions about artificial intelligence in oncology. JNCI J Natl Cancer Inst [Internet]. 2017 May [cited 2019 Nov 10];109(5). Available from: https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djx113

  57. 57.

    Choi YI, Chung J, Kim KO, Kwon KA, Kim YJ, Park DK, et al. Concordance rate between clinicians and Watson for oncology among patients with advanced gastric cancer: early, real-world experience in Korea. Can J Gastroenterol Hepatol. 2019 Feb 3;2019:1–6.

    Google Scholar 

  58. 58.

    Kim EJ, Woo HS, Cho JH, Sym SJ, Baek J-H, Lee W-S, et al. Early experience with Watson for oncology in Korean patients with colorectal cancer. Orzechowski P, editor. PLOS ONE. 2019 Mar 25;14(3):e0213640.

  59. 59.

    Machines taught by photos learn a sexist view of women. Wired [Internet]. [cited 2019 Nov 26]; Available from: https://www.wired.com/story/machines-taught-by-photos-learn-a-sexist-view-of-women/

  60. 60.

    Zou J, Schiebinger L. AI can be sexist and racist — it’s time to make it fair. Nature. 2018 Jul;559(7714):324–6.

    CAS  PubMed  Google Scholar 

  61. 61.

    Courtland R. Bias detectives: the researchers striving to make algorithms fair. Nature. 2018 Jun 20;558:357–60.

    CAS  PubMed  Google Scholar 

  62. 62.

    Hague DC. Benefits, pitfalls, and potential bias in health care AI. N C Med J. 2019 Jul;80(4):219–23.

    PubMed  Google Scholar 

  63. 63.

    Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in neural information processing systems 30 [Internet]. Curran Associates, Inc.; 2017 [cited 2019 Nov 17]. p. 4765–4774. Available from: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

  64. 64.

    Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018 Oct;2(10):749–60.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Radakovich N. Predicting Response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) using artificial intelligence (AI). In ASH; 2019 [cited 2019 Nov 14]. Available from: https://ash.confex.com/ash/2019/webprogram/Paper126275.html

  66. 66.

    Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019 Aug;572(7767):116–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aziz Nazha.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest and have no financial disclosures related to this work.

Ethical Statement

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Social Media Impact of Hematologic Malignancies

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Radakovich, N., Nagy, M. & Nazha, A. Artificial Intelligence in Hematology: Current Challenges and Opportunities. Curr Hematol Malig Rep 15, 203–210 (2020). https://doi.org/10.1007/s11899-020-00575-4

Download citation

Keywords

  • Machine learning
  • Artificial intelligence
  • Hematology
  • Deep learning