Skip to main content
Log in

The Emerging Role of Liquid Biopsies in Lymphoproliferative Disorders

  • T-Cell and Other Lymphoproliferative Malignancies (J Zain, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Lymphomas represent clinically and molecularly heterogeneous diseases with variable presentations, treatment algorithms, and outcomes. As treatment options continue to expand, more sophisticated prognostic and predictive biomarkers are needed to guide personalized treatment approaches.

Recent Findings

Liquid biopsies, in which the sequencing of circulating tumor DNA (ctDNA) in peripheral blood serves as a surrogate for a tumor biopsy, are now being studied across cancer subtypes, including in lymphoid malignancies. Recent studies have demonstrated the potential of these techniques to improve prognostication and guide individualized treatment strategies, providing a significant advance in the field of precision medicine.

Summary

In this review, we describe the sequencing platforms currently available for analysis of ctDNA in lymphoma and their potential applications in clinical practice, which seem poised to refine treatment paradigms across lymphoma subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Melani C, Roschewski M. Molecular monitoring of cell-free circulating tumor DNA in non-Hodgkin lymphoma. Oncology (Williston Park). 2016;30(8):731–8 44.

    Google Scholar 

  2. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38. https://doi.org/10.1038/nrc.2017.7.

    Article  CAS  PubMed  Google Scholar 

  3. Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9. https://doi.org/10.1016/j.ccell.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  4. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  5. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  PubMed  Google Scholar 

  6. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24. https://doi.org/10.1086/302205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017;5(3):46. https://doi.org/10.21037/atm.2017.01.32.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Herrera AF, Armand P. Minimal residual disease assessment in lymphoma: methods and applications. J Clin Oncol. 2017;35(34):3877–87. https://doi.org/10.1200/JCO.2017.74.5281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scherer F, Kurtz DM, Diehn M, Alizadeh AA. High-throughput sequencing for noninvasive disease detection in hematologic malignancies. Blood. 2017;130(4):440–52. https://doi.org/10.1182/blood-2017-03-735639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bottcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E, et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica. 2008;93(4):551–9. https://doi.org/10.3324/haematol.11267.

    Article  PubMed  Google Scholar 

  11. Bosch F, Ferrer A, Villamor N, Gonzalez M, Briones J, Gonzalez-Barca E, et al. Fludarabine, cyclophosphamide, and mitoxantrone as initial therapy of chronic lymphocytic leukemia: high response rate and disease eradication. Clin Cancer Res. 2008;14(1):155–61. https://doi.org/10.1158/1078-0432.CCR-07-1371.

    Article  CAS  PubMed  Google Scholar 

  12. Cheminant M, Derrieux C, Touzart A, Schmit S, Grenier A, Trinquand A, et al. Minimal residual disease monitoring by 8-color flow cytometry in mantle cell lymphoma: an EU-MCL and LYSA study. Haematologica. 2016;101(3):336–45. https://doi.org/10.3324/haematol.2015.134957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–34. https://doi.org/10.1038/sj.leu.2402922.

    Article  CAS  PubMed  Google Scholar 

  14. Pott C, Bruggemann M, Ritgen M, van der Velden VH, van Dongen JJ, Kneba M. MRD detection in B-cell non-Hodgkin lymphomas using Ig gene rearrangements and chromosomal translocations as targets for real-time quantitative PCR. Methods Mol Biol. 2013;971:175–200. https://doi.org/10.1007/978-1-62703-269-8_10.

    Article  CAS  PubMed  Google Scholar 

  15. • Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125(24):3679–87. https://doi.org/10.1182/blood-2015-03-635169 This study establishes the prognostic utility of IgNGS in DLBCL and potential role in surveillance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drandi D, Kubiczkova-Besse L, Ferrero S, Dani N, Passera R, Mantoan B, et al. Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma: a comparison with real-time PCR. J Mol Diagn. 2015;17(6):652–60. https://doi.org/10.1016/j.jmoldx.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  17. Camus V, Sarafan-Vasseur N, Bohers E, Dubois S, Mareschal S, Bertrand P, et al. Digital PCR for quantification of recurrent and potentially actionable somatic mutations in circulating free DNA from patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(9):2171–9. https://doi.org/10.3109/10428194.2016.1139703.

    Article  CAS  PubMed  Google Scholar 

  18. •• Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AF, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155. https://doi.org/10.1126/scitranslmed.aai8545 This study highlights the role CAPPSeq to provide prognostic information in DLBCL and identify and track somatic mutations.

  19. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017;8(1):1324. https://doi.org/10.1038/s41467-017-00965-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teras LR, DeSantis CE, Cerhan JR, Morton LM, Jemal A, Flowers CR. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin. 2016;66:443–59. https://doi.org/10.3322/caac.21357.

    Article  PubMed  Google Scholar 

  21. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol. 2005;23(22):5027–33. https://doi.org/10.1200/JCO.2005.09.137.

    Article  CAS  PubMed  Google Scholar 

  22. Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, Lengfelder E, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 2008;9(2):105–16. https://doi.org/10.1016/S1470-2045(08)70002-0.

    Article  CAS  PubMed  Google Scholar 

  23. International Non-Hodgkin’s Lymphoma Prognostic Factors P. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. https://doi.org/10.1056/NEJM199309303291402.

    Article  Google Scholar 

  24. Stiff PJ, Unger JM, Cook JR, Constine LS, Couban S, Stewart DA, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 2013;369(18):1681–90. https://doi.org/10.1056/NEJMoa1301077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cunningham D, Hawkes EA, Jack A, Qian W, Smith P, Mouncey P, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. https://doi.org/10.1016/S0140-6736(13)60313-X.

    Article  CAS  PubMed  Google Scholar 

  26. Leonard JP, Kolibaba KS, Reeves JA, Tulpule A, Flinn IW, Kolevska T, et al. Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3538–46. https://doi.org/10.1200/JCO.2017.73.2784.

    Article  CAS  PubMed  Google Scholar 

  27. Moskowitz CH, Schoder H, Teruya-Feldstein J, Sima C, Iasonos A, Portlock CS, et al. Risk-adapted dose-dense immunochemotherapy determined by interim FDG-PET in advanced-stage diffuse large B-cell lymphoma. J Clin Oncol. 2010;28(11):1896–903. https://doi.org/10.1200/JCO.2009.26.5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duhrsen U, Muller S, Hertenstein B, Thomssen H, Kotzerke J, Mesters R, et al. Positron emission tomography-guided therapy of aggressive non-Hodgkin lymphomas (PETAL): a multicenter, randomized phase III trial. J Clin Oncol. 2018;36(20):2024–34. https://doi.org/10.1200/JCO.2017.76.8093.

    Article  PubMed  Google Scholar 

  29. Thompson CA, Ghesquieres H, Maurer MJ, Cerhan JR, Biron P, Ansell SM, et al. Utility of routine post-therapy surveillance imaging in diffuse large B-cell lymphoma. J Clin Oncol. 2014;32(31):3506–12. https://doi.org/10.1200/JCO.2014.55.7561.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cohen JB, Behera M, Thompson CA, Flowers CR. Evaluating surveillance imaging for diffuse large B-cell lymphoma and Hodgkin lymphoma. Blood. 2017;129(5):561–4. https://doi.org/10.1182/blood-2016-08-685073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. • Roschewski M, Dunleavy K, Pittaluga S, Moorhead M, Pepin F, Kong K, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5):541–9. https://doi.org/10.1016/S1470-2045(15)70106-3 This study identifies interim ctDNA, as assessed by IgNGS, as a promising biomarker in DLBCL.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bohers E, Viailly PJ, Becker S, Marchand V, Ruminy P, Maingonnat C, et al. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J. 2018;8(8):74. https://doi.org/10.1038/s41408-018-0111-6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. •• Kurtz DM, Scherer F, Jin MC, Soo J, Craig AFM, Esfahani MS, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma. J Clin Oncol. 2018;36(28):2845–53. https://doi.org/10.1200/JCO.2018.78.5246 This study demonstrates the prognostic utility of pretreatment ctDNA using CAPPSeq as well as the prognostic role of ctDNA dynamics following frontline and salvage therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herrera AF, Kim HT, Kong KA, Faham M, Sun H, Sohani AR, et al. Next-generation sequencing-based detection of circulating tumour DNA after allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016;175(5):841–50. https://doi.org/10.1111/bjh.14311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Rossi D, Diop F, Spaccarotella E, Monti S, Zanni M, Rasi S, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood. 2017;129(14):1947–57. https://doi.org/10.1182/blood-2016-05-719641 Using CAPPSEq the authors demonstrate effective ability of genotyping cfDNA in DLBCL.

    Article  CAS  PubMed  Google Scholar 

  36. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–90. https://doi.org/10.1038/s41591-018-0016-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018;378(15):1396–407. https://doi.org/10.1056/NEJMoa1801445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481–94 e15. https://doi.org/10.1016/j.cell.2017.09.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vose JM. Mantle cell lymphoma: 2017 update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2017;92(8):806–13. https://doi.org/10.1002/ajh.24797.

    Article  CAS  PubMed  Google Scholar 

  41. Maddocks K. Update on mantle cell lymphoma. Blood. 2018;132:1647–56. https://doi.org/10.1182/blood-2018-03-791392.

    Article  CAS  PubMed  Google Scholar 

  42. Dreyling M, Lenz G, Hoster E, Van Hoof A, Gisselbrecht C, Schmits R, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105(7):2677–84. https://doi.org/10.1182/blood-2004-10-3883.

    Article  CAS  PubMed  Google Scholar 

  43. Romaguera JE, Fayad L, Rodriguez MA, Broglio KR, Hagemeister FB, Pro B, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol. 2005;23(28):7013–23. https://doi.org/10.1200/JCO.2005.01.1825.

    Article  CAS  PubMed  Google Scholar 

  44. Bernstein SH, Epner E, Unger JM, Leblanc M, Cebula E, Burack R, et al. A phase II multicenter trial of hyperCVAD MTX/Ara-C and rituximab in patients with previously untreated mantle cell lymphoma; SWOG 0213. Ann Oncol. 2013;24(6):1587–93. https://doi.org/10.1093/annonc/mdt070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Armand P, Redd R, Bsat J, Mayuram S, Giardino A, Fisher DC, et al. A phase 2 study of rituximab-bendamustine and rituximab-cytarabine for transplant-eligible patients with mantle cell lymphoma. Br J Haematol. 2016;173(1):89–95. https://doi.org/10.1111/bjh.13929.

    Article  CAS  PubMed  Google Scholar 

  46. Le Gouill S, Thieblemont C, Oberic L, Moreau A, Bouabdallah K, Dartigeas C, et al. Rituximab after autologous stem-cell transplantation in mantle-cell lymphoma. N Engl J Med. 2017;377(13):1250–60. https://doi.org/10.1056/NEJMoa1701769.

    Article  PubMed  Google Scholar 

  47. Martin P, Chadburn A, Christos P, Weil K, Furman RR, Ruan J, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009;27(8):1209–13. https://doi.org/10.1200/JCO.2008.19.6121.

    Article  PubMed  Google Scholar 

  48. Abrisqueta P, Scott DW, Slack GW, Steidl C, Mottok A, Gascoyne RD, et al. Observation as the initial management strategy in patients with mantle cell lymphoma. Ann Oncol. 2017;28(10):2489–95. https://doi.org/10.1093/annonc/mdx333.

    Article  CAS  PubMed  Google Scholar 

  49. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Bottcher S, Asnafi V, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115(16):3215–23. https://doi.org/10.1182/blood-2009-06-230250.

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Johnson JL, Koval G, Malnassy G, Sher D, Damon LE, et al. Detection of minimal residual disease following induction immunochemotherapy predicts progression free survival in mantle cell lymphoma: final results of CALGB 59909. Haematologica. 2012;97(4):579–85. https://doi.org/10.3324/haematol.2011.050203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Kolstad A, Pedersen LB, Eskelund CW, Husby S, Gronbaek K, Jerkeman M, et al. Molecular monitoring after autologous stem cell transplantation and preemptive rituximab treatment of molecular relapse; results from the Nordic mantle cell lymphoma studies (MCL2 and MCL3) with median follow-up of 8.5 years. Biol Blood Marrow Transplant. 2017;23(3):428–35. https://doi.org/10.1016/j.bbmt.2016.12.634 This trial demonstrates the prognostic value of MRD using qPCR in MCL.

    Article  CAS  PubMed  Google Scholar 

  52. Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, Thieblemont C, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016;388(10044):565–75. https://doi.org/10.1016/S0140-6736(16)00739-X.

    Article  CAS  PubMed  Google Scholar 

  53. Cowan AJ, Stevenson PA, Cassaday RD, Graf SA, Fromm JR, Wu D, et al. Pretransplantation minimal residual disease predicts survival in patients with mantle cell lymphoma undergoing autologous stem cell transplantation in complete remission. Biol Blood Marrow Transplant. 2016;22(2):380–5. https://doi.org/10.1016/j.bbmt.2015.08.035.

    Article  PubMed  Google Scholar 

  54. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65. https://doi.org/10.1182/blood-2003-12-4434.

    Article  CAS  PubMed  Google Scholar 

  55. Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111–22. https://doi.org/10.1016/S1470-2045(15)00169-2.

    Article  CAS  PubMed  Google Scholar 

  56. Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A, et al. Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res. 2014;20(24):6398–405. https://doi.org/10.1158/1078-0432.CCR-14-0407.

    Article  CAS  PubMed  Google Scholar 

  57. Ladetto M, Lobetti-Bodoni C, Mantoan B, Ceccarelli M, Boccomini C, Genuardi E, et al. Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood. 2013;122(23):3759–66. https://doi.org/10.1182/blood-2013-06-507319.

    Article  CAS  PubMed  Google Scholar 

  58. Rambaldi A, Lazzari M, Manzoni C, Carlotti E, Arcaini L, Baccarani M, et al. Monitoring of minimal residual disease after CHOP and rituximab in previously untreated patients with follicular lymphoma. Blood. 2002;99(3):856–62.

    Article  CAS  PubMed  Google Scholar 

  59. Delfau-Larue MH, van der Gucht A, Dupuis J, Jais JP, Nel I, Beldi-Ferchiou A, et al. Total metabolic tumor volume, circulating tumor cells, cell-free DNA: distinct prognostic value in follicular lymphoma. Blood Adv. 2018;2(7):807–16. https://doi.org/10.1182/bloodadvances.2017015164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scholz CW, Pinto A, Linkesch W, Linden O, Viardot A, Keller U, et al. (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31(3):308–13. https://doi.org/10.1200/JCO.2011.41.1553.

    Article  CAS  PubMed  Google Scholar 

  61. Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, et al. Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood. 2005;105(9):3428–33. https://doi.org/10.1182/blood-2004-06-2490.

    Article  CAS  PubMed  Google Scholar 

  62. Sarkozy C, Huet S, Carlton VE, Fabiani B, Delmer A, Jardin F, et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget. 2017;8(5):8765–74. https://doi.org/10.18632/oncotarget.14448.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Monitillo L, Genuardi E, Mantoan B, Trautmann H, Kneba M, Brüggemann M, et al. A comparative analysis of next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in follicular lymphomas. Blood. 2013;122(21):4293.

    Google Scholar 

  64. Ardeshna KM, Qian W, Smith P, Braganca N, Lowry L, Patrick P, et al. Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma: an open-label randomised phase 3 trial. Lancet Oncol. 2014;15(4):424–35. https://doi.org/10.1016/S1470-2045(14)70027-0.

    Article  CAS  PubMed  Google Scholar 

  65. Solal-Celigny P, Bellei M, Marcheselli L, Pesce EA, Pileri S, McLaughlin P, et al. Watchful waiting in low-tumor burden follicular lymphoma in the rituximab era: results of an F2-study database. J Clin Oncol. 2012;30(31):3848–53. https://doi.org/10.1200/JCO.2010.33.4474.

    Article  PubMed  Google Scholar 

  66. Huet S, Sujobert P, Salles G. From genetics to the clinic: a translational perspective on follicular lymphoma. Nat Rev Cancer. 2018;18(4):224–39. https://doi.org/10.1038/nrc.2017.127.

    Article  CAS  PubMed  Google Scholar 

  67. Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81. https://doi.org/10.1038/ng.2856.

    Article  CAS  PubMed  Google Scholar 

  68. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  69. Ansell SM. Hodgkin lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91(4):434–42. https://doi.org/10.1002/ajh.24272.

    Article  CAS  PubMed  Google Scholar 

  70. Radford J, Illidge T, Counsell N, Hancock B, Pettengell R, Johnson P, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–607. https://doi.org/10.1056/NEJMoa1408648.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29. https://doi.org/10.1056/NEJMoa1510093.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gallamini A, Hutchings M, Rigacci L, Specht L, Merli F, Hansen M, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52. https://doi.org/10.1200/JCO.2007.11.6525.

    Article  CAS  PubMed  Google Scholar 

  73. Chen RW, Ansell SM, Gallamini A, Connors JM, Savage KJ, Collins GP, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin lymphoma (HL): Impact of cycle 2 PET result on modified progression-free survival (mPFS). J Clin Oncol. 2018;36(15_suppl):7539.

    Article  Google Scholar 

  74. •• Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M, Forestieri G, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413–25. https://doi.org/10.1182/blood-2017-11-812073 This study identifies a prognostic role of ctDNA in HL using CAPPSeq.

    Article  CAS  PubMed  Google Scholar 

  75. Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D, Verheecke M, et al. Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol. 2015;2(2):e55–65. https://doi.org/10.1016/S2352-3026(14)00039-8.

    Article  PubMed  Google Scholar 

  76. Camus V, Stamatoullas A, Mareschal S, Viailly PJ, Sarafan-Vasseur N, Bohers E, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016;101(9):1094–101. https://doi.org/10.3324/haematol.2016.145102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Crombie.

Ethics declarations

Conflict of Interest

Philippe Armand reports interest from Adaptive, BMS, Merck, Affimed, Pfizer, and Roche, outside the submitted work. Jennifer Crombie declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crombie, J., Armand, P. The Emerging Role of Liquid Biopsies in Lymphoproliferative Disorders. Curr Hematol Malig Rep 14, 11–21 (2019). https://doi.org/10.1007/s11899-019-0493-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-019-0493-y

Keywords

Navigation