Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia. 2008;22(5):905–14. https://doi.org/10.1038/leu.2008.72.
CAS
Article
PubMed
Google Scholar
Barosi G, Rosti V, Bonetti E, Campanelli R, Carolei A, Catarsi P, et al. Evidence that prefibrotic myelofibrosis is aligned along a clinical and biological continuum featuring primary myelofibrosis. PLoS One. 2012;7(4):e35631. https://doi.org/10.1371/journal.pone.0035631.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. https://doi.org/10.1056/NEJMoa051113.
CAS
Article
PubMed
Google Scholar
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. https://doi.org/10.1056/NEJMoa1311347.
CAS
Article
PubMed
Google Scholar
Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. https://doi.org/10.1371/journal.pmed.0030270.
CAS
Article
PubMed
PubMed Central
Google Scholar
Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–32. https://doi.org/10.1182/blood-2015-07-661835.
CAS
Article
PubMed
PubMed Central
Google Scholar
Viny AD, Levine RL. Genetics of myeloproliferative neoplasms. Cancer J. 2014;20(1):61–5. https://doi.org/10.1097/ppo.0000000000000013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124(7):1062–9. https://doi.org/10.1182/blood-2014-05-578435.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kralovics R, Teo SS, Li S, Theocharides A, Buser AS, Tichelli A, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108(4):1377–80. https://doi.org/10.1182/blood-2005-11-009605.
CAS
Article
PubMed
Google Scholar
Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. https://doi.org/10.1182/blood-2013-11-537167.
CAS
Article
PubMed
Google Scholar
Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5:e369. https://doi.org/10.1038/bcj.2015.94.
CAS
Article
PubMed
PubMed Central
Google Scholar
PharmaEssentia. PharmaEssentia and AOP orphan receive EU approval of Besremi™ (ropeginterferon alfa-2b) for treatment of polycythemia Vera (PV) in EU. 2018. Available from: https://www.prnewswire.com/news-releases/pharmaessentia-and-aop-orphan-receive-eu-approval-of-besremi-ropeginterferon-alfa-2b-for-treatment-of-polycythemia-vera-pv-in-eu-300800079.html. Accessed April 2019.
Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood. 2012;120(7):1367–79. https://doi.org/10.1182/blood-2012-05-399048.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29(11):2126–33. https://doi.org/10.1038/leu.2015.233.
CAS
Article
PubMed
Google Scholar
• Bose P, Alfayez M, Verstovsek S. New concepts of treatment for patients with myelofibrosis. Curr Treat Options in Oncol. 2019;20(1):5. https://doi.org/10.1007/s11864-019-0604-y
Comprehensive reviews of novel therapeutic approaches in MPN.
Article
Google Scholar
• Pettit K, Odenike O. Novel therapies for myelofibrosis. Curr Hematol Malig Rep. 2017;12(6):611–24. https://doi.org/10.1007/s11899-017-0403-0
Comprehensive reviews of novel therapeutic approaches in MPN.
Article
PubMed
PubMed Central
Google Scholar
• Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood. 2017;130(2):115–25. https://doi.org/10.1182/blood-2017-04-742288
Comprehensive reviews of novel therapeutic approaches in MPN.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood. 2012;119(14):3219–25. https://doi.org/10.1182/blood-2011-11-394775
Excellent review about inflammation and deregulated immune system in MPNs.
CAS
Article
PubMed
Google Scholar
•• Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013;24(2):133–45. https://doi.org/10.1016/j.cytogfr.2013.01.004
Excellent review about inflammation and deregulated immune system in MPNs.
CAS
Article
PubMed
Google Scholar
•• Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun. 2017;85:58–63. https://doi.org/10.1016/j.jaut.2017.06.010
Excellent review about inflammation and deregulated immune system in MPNs.
CAS
Article
PubMed
Google Scholar
•• Barosi G. An immune dysregulation in MPN. Curr Hematol Malig Rep. 2014;9(4):331–9. https://doi.org/10.1007/s11899-014-0227-0
Excellent review about inflammation and deregulated immune system in MPNs.
Article
PubMed
Google Scholar
•• Hasselbalch HC. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk Res. 2013;37(2):214–20. https://doi.org/10.1016/j.leukres.2012.10.020
Excellent review about inflammation and deregulated immune system in MPNs.
CAS
Article
PubMed
Google Scholar
Delhommeau FDS, Tonetti C, Massé A, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007;109:71–7.
CAS
Article
PubMed
Google Scholar
Pourcelot E, Trocme C, Mondet J, Bailly S, Toussaint B, Mossuz P. Cytokine profiles in polycythemia vera and essential thrombocythemia patients: clinical implications. Exp Hematol. 2014;42(5):360–8. https://doi.org/10.1016/j.exphem.2014.01.006.
CAS
Article
PubMed
Google Scholar
Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(10):1356–63. https://doi.org/10.1200/jco.2010.32.9490.
CAS
Article
Google Scholar
Tefferi A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(33):8520–30. https://doi.org/10.1200/jco.2004.00.9316.
CAS
Article
Google Scholar
Le Bousse-Kerdiles MC, Chevillard S, Charpentier A, Romquin N, Clay D, Smadja-Joffe F, et al. Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood. 1996;88(12):4534–46.
PubMed
Google Scholar
Bock O, Hoftmann J, Theophile K, Hussein K, Wiese B, Schlue J, et al. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol. 2008;172(4):951–60. https://doi.org/10.2353/ajpath.2008.071030.
CAS
Article
PubMed
PubMed Central
Google Scholar
Flamant L, Toffoli S, Raes M, Michiels C. Hypoxia regulates inflammatory gene expression in endothelial cells. Exp Cell Res. 2009;315(5):733–47. https://doi.org/10.1016/j.yexcr.2008.11.020.
CAS
Article
PubMed
Google Scholar
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;44(7203):436–44. https://doi.org/10.1038/nature07205.
CAS
Article
Google Scholar
Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62. https://doi.org/10.1038/nrm909.
CAS
Article
PubMed
Google Scholar
Boissinot M, Cleyrat C, Vilaine M, Jacques Y, Corre I, Hermouet S. Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F. Oncogene. 2011;30(8):990–1001. https://doi.org/10.1038/onc.2010.479.
CAS
Article
PubMed
Google Scholar
•• Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5(3):316–31. https://doi.org/10.1158/2159-8290.cd-14-0736
Excellent paper about JAK/STAT pathway in MPN pathogenesis.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhan H, Ma Y, Lin CH, Kaushansky K. JAK2(V617F)-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia. 2016;30(12):2332–41. https://doi.org/10.1038/leu.2016.114.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lataillade JJ, Pierre-Louis O, Hasselbalch HC, Uzan G, Jasmin C, Martyre MC, et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood. 2008;112(8):3026–35. https://doi.org/10.1182/blood-2008-06-158386.
CAS
Article
PubMed
Google Scholar
Corre-Buscail I, Pineau D, Boissinot M, Hermouet S. Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8. Exp Hematol. 2005;33(11):1299–308. https://doi.org/10.1016/j.exphem.2005.07.002.
CAS
Article
PubMed
Google Scholar
Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, et al. Molecular profiling of peripheral blood cells from patients with polycythemia vera and related neoplasms: identification of deregulated genes of significance for inflammation and immune surveillance. Leuk Res. 2012;36(11):1387–92. https://doi.org/10.1016/j.leukres.2012.07.009.
CAS
Article
PubMed
Google Scholar
Zhao WB, Li Y, Liu X, Zhang LY, Wang X. Involvement of CD4+CD25+ regulatory T cells in the pathogenesis of polycythaemia vera. Chin Med J. 2008;121(18):1781–6.
CAS
Article
PubMed
Google Scholar
Skov V, Riley CH, Thomassen M, Larsen TS, Jensen MK, Bjerrum OW, et al. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis. Leuk Lymphoma. 2013;54(10):2269–73. https://doi.org/10.3109/10428194.2013.764417.
CAS
Article
PubMed
Google Scholar
Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia. 2013;27(11):2187–95. https://doi.org/10.1038/leu.2013.102.
CAS
Article
PubMed
Google Scholar
Bjorn ME, Hasselbalch HC. The role of reactive oxygen species in myelofibrosis and related neoplasms. Mediat Inflamm. 2015:648090. https://doi.org/10.1155/2015/648090.
Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C, et al. Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res. 2016;43:39–43. https://doi.org/10.1016/j.leukres.2016.02.004.
CAS
Article
PubMed
Google Scholar
• Prestipino A, Emhardt AJ, Aumann K, O'Sullivan D, Gorantla SP, Duquesne S, et al. Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018;10(429). https://doi.org/10.1126/scitranslmed.aam7729
Interesting paper about the role of JAK2 in PD-L1 overexpression.
•• Holmstrom MO, Hjortso MD, Ahmad SM, Met O, Martinenaite E, Riley C, et al. The JAK2V617F mutation is a target for specific T cells in the JAK2V617F-positive myeloproliferative neoplasms. Leukemia. 2017;31(2):495–8. https://doi.org/10.1038/leu.2016.290
Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
CAS
Article
PubMed
Google Scholar
•• Holmstrom MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016;30(12):2413–6. https://doi.org/10.1038/leu.2016.233
Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
CAS
Article
PubMed
Google Scholar
•• Holmstrom MO, Riley CH, Skov V, Svane IM, Hasselbalch HC, Andersen MH. Spontaneous T-cell responses against the immune check point programmed-death-ligand 1 (PD-L1) in patients with chronic myeloproliferative neoplasms correlate with disease stage and clinical response. Oncoimmunology. 2018;7(6):e1433521. https://doi.org/10.1080/2162402x.2018.1433521
Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Holmstrom MO, Hasselbalch HC, Andersen MH. The JAK2V617F and CALR exon 9 mutations are shared immunogenic neoantigens in hematological malignancy. Oncoimmunology. 2017;6(11):e1358334. https://doi.org/10.1080/2162402x.2017.1358334
Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Elf SAN, Chen E, et al. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov. 2016;6(4):368–81 Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Pecquet Ch BT, Chachoua I, Roy A, Vertenoeil G, et al. Secreted mutant calreticulins as rogue cytokines trigger thrombopoietin receptor activation specifically in CALR mutated cells: perspectives for MPN therapy. Blood. 2018;132:4 Very interesting data about the potential use of JAK2 and CALR as neo-antigens for cancer vaccines.
Article
Google Scholar
•• Mesa RA, Niblack J, Wadleigh M, Verstovsek S, Camoriano J, Barnes S, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer. 2007;109(1):68–76. https://doi.org/10.1002/cncr.22365
Important study about symptoms burden in patients with MPN.
Article
PubMed
Google Scholar
Mughal TI, Vaddi K, Sarlis NJ, Verstovsek S. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J Gen Med. 2014;7:89–101. https://doi.org/10.2147/ijgm.s51800.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mesa R, Jamieson C, Bhatia R, Deininger MW, Gerds AT, Gojo I, et al. Myeloproliferative neoplasms, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2016;14(12):1572–611.
CAS
Article
Google Scholar
Mesa RA, Jamieson C, Bhatia R, Deininger MW, Fletcher CD, Gerds AT, et al. NCCN guidelines insights: myeloproliferative neoplasms, version 2.2018. J Natl Compr Cancer Netw. 2017;15(10):1193–207. https://doi.org/10.6004/jnccn.2017.0157.
Article
Google Scholar
Kiladjian JJ, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117(18):4706–15. https://doi.org/10.1182/blood-2010-08-258772.
CAS
Article
PubMed
Google Scholar
Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86. https://doi.org/10.1038/nri1604.
CAS
Article
PubMed
Google Scholar
Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8(3):237–49.
CAS
Article
PubMed
Google Scholar
Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood. 2000;96(6):2093–9.
CAS
PubMed
Google Scholar
Peschel C, Aulitzky WE, Huber C. Influence of interferon-alpha on cytokine expression by the bone marrow microenvironment--impact on treatment of myeloproliferative disorders. Leuk Lymphoma. 1996;22(Suppl 1):129–34. https://doi.org/10.3109/10428199609074370.
Article
PubMed
Google Scholar
Dai CHPJ, et al. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon gamma to produce erythroid cell apoptosis. Blood. 1998;91(4):1235–42.
CAS
PubMed
Google Scholar
Kanfer EJ, Price CM, Gordon AA, Barrett AJ. The in vitro effects of interferon-gamma, interferon-alpha, and tumour-necrosis factor-alpha on erythroid burst-forming unit growth in patients with non-leukaemic myeloproliferative disorders. Eur J Haematol. 1993;50(5):250–4.
CAS
Article
PubMed
Google Scholar
Aman MJ, Bug G, Aulitzky WE, Huber C, Peschel C. Inhibition of interleukin-11 by interferon-alpha in human bone marrow stromal cells. Exp Hematol. 1996;24(8):863–7.
CAS
PubMed
Google Scholar
Carlo-Stella C, Cazzola M, Gasner A, Barosi G, Dezza L, Meloni F, et al. Effects of recombinant alpha and gamma interferons on the in vitro growth of circulating hematopoietic progenitor cells (CFU-GEMM, CFU-Mk, BFU-E, and CFU-GM) from patients with myelofibrosis with myeloid metaplasia. Blood. 1987;70(4):1014–9.
CAS
PubMed
Google Scholar
Indraccolo S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity. 2010;43(3):244–7. https://doi.org/10.3109/08916930903510963.
CAS
Article
PubMed
Google Scholar
Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8. https://doi.org/10.1038/nature07815.
CAS
Article
PubMed
Google Scholar
Lu M, Zhang W, Li Y, Berenzon D, Wang X, Wang J, et al. Interferon-alpha targets JAK2V617F-positive hematopoietic progenitor cells and acts through the p38 MAPK pathway. Exp Hematol. 2010;38(6):472–80. https://doi.org/10.1016/j.exphem.2010.03.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Riley CH, Jensen MK, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT, et al. Increase in circulating CD4(+)CD25(+)Foxp3(+) T cells in patients with Philadelphia-negative chronic myeloproliferative neoplasms during treatment with IFN-alpha. Blood. 2011;118(8):2170–3. https://doi.org/10.1182/blood-2011-03-340992.
CAS
Article
PubMed
Google Scholar
Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-alpha. Eur J Haematol. 2015;94(3):227–34. https://doi.org/10.1111/ejh.12420.
CAS
Article
PubMed
Google Scholar
Rizza P, Moretti F, Belardelli F. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity. 2010;43(3):204–9. https://doi.org/10.3109/08916930903510880.
CAS
Article
PubMed
Google Scholar
Xiong Z, Yan Y, Liu E, Silver RT, Verstovsek S, Yang F, et al. Novel tumor antigens elicit anti-tumor humoral immune reactions in a subset of patients with polycythemia vera. Clin Immunol. 2007;122(3):279–87. https://doi.org/10.1016/j.clim.2006.10.006.
CAS
Article
PubMed
Google Scholar
Skov V, Riley CH, Thomassen M, Kjaer L, Stauffer Larsen T, Bjerrum OW, et al. The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms. Leuk Lymphoma. 2017;58(8):1914–21. https://doi.org/10.1080/10428194.2016.1262032.
CAS
Article
PubMed
Google Scholar
Skov VRC, Thomassen M, Lasse Kjær L, et al. Interferon-alfa2 treatment of patients with polycythemia vera and related neoplasms impacts deregulation of oxidative stress genes and antioxidative defence mechanisms. Potential implications of IFN-alfa induced changes in TP53, NRF2 and CXCR4 for genomic instability and CD34+ mobilisation. Blood. 2018;132:4326.
Google Scholar
Radin AI, Kim HT, Grant BW, Bennett JM, Kirkwood JM, Stewart JA, et al. Phase II study of alpha2 interferon in the treatment of the chronic myeloproliferative disorders (E5487): a trial of the Eastern Cooperative Oncology Group. Cancer. 2003;98(1):100–9. https://doi.org/10.1002/cncr.11486.
CAS
Article
PubMed
Google Scholar
Gowin K, Thapaliya P, Samuelson J, Harrison C, Radia D, Andreasson B, et al. Experience with pegylated interferon alpha-2a in advanced myeloproliferative neoplasms in an international cohort of 118 patients. Haematologica. 2012;97(10):1570–3. https://doi.org/10.3324/haematol.2011.061390.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gowin KLJT, Kosiorek HE, Camoriano J, Tibes R, Palmer J, Mesa RA. Pegylated interferon alpha-2a in 75 patients with myeloproliferative neoplasms: a single center experience. Blood. 2015;126:2818.
Google Scholar
Stauffer Larsen T, Iversen KF, Hansen E, Mathiasen AB, Marcher C, Frederiksen M, et al. Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha. Leuk Res. 2013;37(9):1041–5. https://doi.org/10.1016/j.leukres.2013.06.012.
CAS
Article
PubMed
Google Scholar
Larsen TS, Moller MB, de Stricker K, Norgaard P, Samuelsson J, Marcher C, et al. Minimal residual disease and normalization of the bone marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on molecular response patterns in seven patients in sustained complete hematological remission. Hematology. 2009;14(6):331–4. https://doi.org/10.1179/102453309x12473408860587.
CAS
Article
PubMed
Google Scholar
Yacoub AMJ, Kosiorek HE, et al. Single-arm salvage therapy with pegylated interferon alfa-2a for patients with high-risk polycythemia vera or high-risk essential thrombocythemia who are either hydroxyurea-resistant or intolerant: final results of the myeloproliferative disorders-research consortium (MPD-RC) protocol 111 global phase II trial. Blood. 2017;130:321.
Google Scholar
Masarova L, Patel KP, Newberry KJ, Cortes J, Borthakur G, Konopleva M, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a post-hoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):e165–75. https://doi.org/10.1016/s2352-3026(17)30030-3.
Article
PubMed
PubMed Central
Google Scholar
Masarova L, Yin CC, Cortes JE, Konopleva M, Borthakur G, Newberry KJ, et al. Histomorphological responses after therapy with pegylated interferon alpha-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV). Exp Hematol Oncol. 2017;6:30. https://doi.org/10.1186/s40164-017-0090-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Knudsen AT HD, Ocias LF, Bjerrum OW, Brabrand M, et al. Three-year analysis of the DALIAH trial - a randomized controlled phase III clinical trial comparing recombinant interferon alpha-2 vs. hydroxyurea in patients with myeloproliferative neoplasms. EHA learning center S1609. 2019.
Mascarenhas JKH, Prchal J, Rambaldi A, et al. Results of the myeloproliferative neoplasms - research consortium (MPN-RC) 112 randomized trial of pegylated interferon alfa-2a (PEG) versus hydroxyurea (HU) therapy for the treatment of high risk polycythemia vera (PV) and high risk essential thrombocythemia (ET). Blood. 2018;132:577.
Google Scholar
• Mikkelsen SU, Kjaer L, Bjorn ME, Knudsen TA, Sorensen AL, Andersen CBL, et al. Safety and efficacy of combination therapy of interferon-alpha2 and ruxolitinib in polycythemia vera and myelofibrosis. Cancer Med. 2018;7(8):3571–81. https://doi.org/10.1002/cam4.1619
Interesting study of combination of ruxolitinib and interferon in PV and MF.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Silver RT. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer. 2006;107(3):451–8. https://doi.org/10.1002/cncr.22026
Important study of interferon in PV.
CAS
Article
PubMed
Google Scholar
Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72. https://doi.org/10.1182/blood-2008-03-143537.
CAS
Article
PubMed
Google Scholar
Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood. 2006;108(6):2037–40. https://doi.org/10.1182/blood-2006-03-009860.
CAS
Article
PubMed
Google Scholar
Gisslinger H, Zagrijtschuk O, Buxhofer-Ausch V, Thaler J, Schloegl E, Gastl GA, et al. Ropeginterferon alfa-2b, a novel IFNalpha-2b, induces high response rates with low toxicity in patients with polycythemia vera. Blood. 2015;126(15):1762–9. https://doi.org/10.1182/blood-2015-04-637280.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gisslinger HB-AV, Josef Thaler J, Forjan E, et al. Long-term efficacy and safety of ropeginterferon alfa-2b in patients with polycythemia vera – final phase I/II Peginvera Study results. Blood. 2018;132:3030.
Google Scholar
•• Gisslinger HKC, Georgiev P, et al. Evidence for superior efficacy and disease modification after three years of prospective randomized controlled treatment of polycythemia vera patients with ropeginterferon alfa-2b vs. HU/BAT. Blood. 2018;130:579 Important study showing superiority of long term monopegylated interferon to hydrea.
Gisslinger HKC, Georgiev P, et al. Final results from PROUD-PV a randomized controlled phase 3 trial comparing ropeginterferon alfa-2b to hydroxyurea in polycythemia vera patients. Blood. 2016;128(22):475.
Google Scholar
Verger E, Cassinat B. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. 2015;126(24):2585–91. https://doi.org/10.1182/blood-2015-07-659060.
Silver RT, Vandris K. Recombinant interferon alpha (rIFN alpha-2b) may retard progression of early primary myelofibrosis. Leukemia. 2009;23(7):1366–9. https://doi.org/10.1038/leu.2009.90.
CAS
Article
PubMed
Google Scholar
Silver RT, Barel AC, Lascu E, Ritchie EK, Roboz GJ, Christos PJ, et al. The effect of initial molecular profile on response to recombinant interferon-alpha (rIFNalpha) treatment in early myelofibrosis. Cancer. 2017;123(14):2680–7. https://doi.org/10.1002/cncr.30679.
CAS
Article
PubMed
Google Scholar
Ianotto JC, Kiladjian JJ, Demory JL, Roy L, Boyer F, Rey J, et al. PEG-IFN-alpha-2a therapy in patients with myelofibrosis: a study of the French Groupe d'Etudes des Myelofibroses (GEM) and France Intergroupe des syndromes Myeloproliferatifs (FIM). Br J Haematol. 2009;146(2):223–5. https://doi.org/10.1111/j.1365-2141.2009.07745.x.
CAS
Article
PubMed
Google Scholar
Ianotto JC, Chauveau A, Boyer-Perrard F, Gyan E, Laribi K, Cony-Makhoul P, et al. Benefits and pitfalls of pegylated interferon-alpha2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica. 2018;103(3):438–46. https://doi.org/10.3324/haematol.2017.181297.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gisslinger HGB, Schalling M, Krejcy K, et al. Effect of Ropeginterferon alfa-2b in Prefibrotic primary myelofibrosis. Blood. 2018;132:3029.
Google Scholar
Samuelsson J, Hasselbalch H, Bruserud O, Temerinac S, Brandberg Y, Merup M, et al. A phase II trial of pegylated interferon alpha-2b therapy for polycythemia vera and essential thrombocythemia: feasibility, clinical and biologic effects, and impact on quality of life. Cancer. 2006;106(11):2397–405. https://doi.org/10.1002/cncr.21900.
CAS
Article
PubMed
Google Scholar
Silver RT, Vandris K, Goldman JJ. Recombinant interferon-alpha may retard progression of early primary myelofibrosis: a preliminary report. Blood. 2011;117(24):6669–72. https://doi.org/10.1182/blood-2010-11-320069.
CAS
Article
PubMed
Google Scholar
Turlure PCN, Roussel M, Bellucci S, et al. Complete hematological, molecular and histological remissions without cytoreductive treatment lasting after Pegylated-interferon α-2a (peg-IFNα-2a) therapy in polycythemia vera (PV): long term results of a phase 2 trial. Blood. 2011;118:280.
Google Scholar
Knudsen ATHD, Ocias LF, Bjerrum OW, Brabrand M, et al. Long-term efficacy and safety of recombinant interferon Alpha-2 vs. hydroxyurea in polycythemia Vera: preliminary results from the three-year analysis of the Daliah trial - a randomized controlled phase III clinical trial. Blood. 2018;132:580.
Google Scholar
Muller GW, Chen R, Huang SY, Corral LG, Wong LM, Patterson RT, et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 1999;9(11):1625–30.
CAS
Article
PubMed
Google Scholar
Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, Henry J, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 2009;58(7):1033–45. https://doi.org/10.1007/s00262-008-0620-4.
CAS
Article
PubMed
Google Scholar
Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW, et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer. 2002;87(10):1166–72. https://doi.org/10.1038/sj.bjc.6600607.
CAS
Article
PubMed
PubMed Central
Google Scholar
Elliott MA, Mesa RA, Li CY, Hook CC, Ansell SM, Levitt RM, et al. Thalidomide treatment in myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;117(2):288–96.
CAS
Article
PubMed
Google Scholar
Marchetti M, Barosi G, Balestri F, Viarengo G, Gentili S, Barulli S, et al. Low-dose thalidomide ameliorates cytopenias and splenomegaly in myelofibrosis with myeloid metaplasia: a phase II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22(3):424–31. https://doi.org/10.1200/jco.2004.08.160.
CAS
Article
Google Scholar
Barosi G, Grossi A, Comotti B, Musto P, Gamba G, Marchetti M. Safety and efficacy of thalidomide in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2001;114(1):78–83.
CAS
Article
PubMed
Google Scholar
Mesa RA, Elliott MA, Schroeder G, Tefferi A. Durable responses to thalidomide-based drug therapy for myelofibrosis with myeloid metaplasia. Mayo Clin Proc. 2004;79(7):883–9. https://doi.org/10.1016/s0025-6196(11)62154-x.
CAS
Article
PubMed
Google Scholar
Thapaliya P, Tefferi A, Pardanani A, Steensma DP, Camoriano J, Wu W, et al. International working group for myelofibrosis research and treatment response assessment and long-term follow-up of 50 myelofibrosis patients treated with thalidomide-prednisone based regimens. Am J Hematol. 2011;86(1):96–8. https://doi.org/10.1002/ajh.21892.
CAS
Article
PubMed
Google Scholar
Weinkove R, Reilly JT, McMullin MF, Curtin NJ, Radia D, Harrison CN. Low-dose thalidomide in myelofibrosis. Haematologica. 2008;93(7):1100–1. https://doi.org/10.3324/haematol.12416.
CAS
Article
PubMed
Google Scholar
Tefferi A, Cortes J, Verstovsek S, Mesa RA, Thomas D, Lasho TL, et al. Lenalidomide therapy in myelofibrosis with myeloid metaplasia. Blood. 2006;108(4):1158–64. https://doi.org/10.1182/blood-2006-02-004572.
CAS
Article
PubMed
Google Scholar
Mesa RA, Yao X, Cripe LD, Li CY, Litzow M, Paietta E, et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood. 2010;116(22):4436–8. https://doi.org/10.1182/blood-2010-05-287417.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chihara D, Masarova L, Newberry KJ, Maeng H, Ravandi F, Garcia-Manero G, et al. Long-term results of a phase II trial of lenalidomide plus prednisone therapy for patients with myelofibrosis. Leuk Res. 2016;48:1–5. https://doi.org/10.1016/j.leukres.2016.06.007.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tefferi A, Verstovsek S, Barosi G, Passamonti F, Roboz GJ, Gisslinger H, et al. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(27):4563–9. https://doi.org/10.1200/jco.2008.21.7356.
CAS
Article
Google Scholar
Mesa RA, Pardanani AD, Hussein K, Wu W, Schwager S, Litzow MR, et al. Phase1/-2 study of Pomalidomide in myelofibrosis. Am J Hematol. 2010;85(2):129–30. https://doi.org/10.1002/ajh.21598.
CAS
Article
PubMed
Google Scholar
Daver N, Shastri A, Kadia T, Newberry K, Pemmaraju N, Jabbour E, et al. Phase II study of pomalidomide in combination with prednisone in patients with myelofibrosis and significant anemia. Leuk Res. 2014;38(9):1126–9. https://doi.org/10.1016/j.leukres.2014.06.015.
CAS
Article
PubMed
PubMed Central
Google Scholar
Begna KH, Pardanani A, Mesa R, Litzow MR, Hogan WJ, Hanson CA, et al. Long-term outcome of pomalidomide therapy in myelofibrosis. Am J Hematol. 2012;87(1):66–8. https://doi.org/10.1002/ajh.22233.
CAS
Article
PubMed
Google Scholar
Masarova LDN, Kadia T, Pemmaraju N, et al. Efficacy and safety of pomalidomide in combination with prednisone in patients with myelofibrosis and anemia — final results of a prospective phase 2 study. Blood. 2018;132:1764.
Article
Google Scholar
Tefferi A, Al-Ali HK, Barosi G, Devos T, Gisslinger H, Jiang Q, et al. A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence. Leukemia. 2016. https://doi.org/10.1038/leu.2016.300.
•• Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807. https://doi.org/10.1056/NEJMoa1110557
COMFORT studies of ruxolitinib in patients with MF.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. https://doi.org/10.1056/NEJMoa1110556
COMFORT studies of ruxolitinib in patients with MF.
CAS
Article
PubMed
Google Scholar
Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano JV, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. https://doi.org/10.1186/s13045-017-0417-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Passamonti FKJ, Vannucchi AM, Reiter A, et al. ReTHINK: a randomized, double-blind, placebo-controlled, multicenter, phase 3 study of ruxolitinib in early myelofibrosis patients. J Clin Oncol. 2016;34:TPS7080.
Article
Google Scholar
Al-Ali HK, Griesshammer M, le Coutre P, Waller CF, Liberati AM, Schafhausen P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016;101(9):1065–73. https://doi.org/10.3324/haematol.2016.143677.
CAS
Article
PubMed
PubMed Central
Google Scholar
Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7. https://doi.org/10.1038/leu.2016.148.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426–35. https://doi.org/10.1056/NEJMoa1409002
RESPONSE studies of ruxolitinib in patients with PV.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 2017;18(1):88–99. https://doi.org/10.1016/s1470-2045(16)30558-7
RESPONSE studies of ruxolitinib in patients with PV.
CAS
Article
PubMed
Google Scholar
Kiladjian JJPZP, Hino M, Pane F, et al. Long-term efficacy and safety (5 years) in RESPONSE, a phase 3 study comparing ruxolitinib (rux) with best available therapy (BAT) in hydroxyurea (HU)-resistant/intolerant patients (pts) with polycythemia vera (PV). Blood. 2018;132:1753.
Google Scholar
Passamonti FPF, Saydam G, Benevolo G, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly: 156-week follow-up from the phase 3 response-2 study. Blood. 2018;132:1754.
Google Scholar
Foltz LPGM, Zerazhi H, Droogenbroeck JV, et al. Updated results from an open-label, multicenter, expanded treatment protocol (ETP) phase (Ph) 3b study of Ruxolitinib (RUX) in patients (pts) with polycythemia vera (PV) who were hydroxyurea (HU) resistant or intolerant and for whom no alternative treatment (Tx) was available. Blood. 2018;132:1774.
Google Scholar
Mesa R, Vannucchi AM, Yacoub A, Zachee P, Garg M, Lyons R, et al. The efficacy and safety of continued hydroxycarbamide therapy versus switching to ruxolitinib in patients with polycythaemia vera: a randomized, double-blind, double-dummy, symptom study (RELIEF). Br J Haematol. 2017;176(1):76–85. https://doi.org/10.1111/bjh.14382.
CAS
Article
PubMed
Google Scholar
Verstovsek S, Passamonti F, Rambaldi A, Barosi G, Rumi E, Gattoni E, et al. Ruxolitinib for essential thrombocythemia refractory to or intolerant of hydroxyurea: long-term phase 2 study results. Blood. 2017;130(15):1768–71. https://doi.org/10.1182/blood-2017-02-765032.
CAS
Article
PubMed
PubMed Central
Google Scholar
Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood. 2017;130(17):1889–97. https://doi.org/10.1182/blood-2017-05-785790.
CAS
Article
PubMed
PubMed Central
Google Scholar
Singer JW, Al-Fayoumi S, Ma H, Komrokji RS, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol. 2016;8:11–9. https://doi.org/10.2147/jep.s110702.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4(5):e225–e36. https://doi.org/10.1016/s2352-3026(17)30027-3.
Article
PubMed
PubMed Central
Google Scholar
Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018;4(5):652–9. https://doi.org/10.1001/jamaoncol.2017.5818.
Article
PubMed
PubMed Central
Google Scholar
Asshoff M, Petzer V, Warr MR, Haschka D, Tymoszuk P, Demetz E, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017;129(13):1823–30. https://doi.org/10.1182/blood-2016-09-740092.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mesa RA, Kiladjian JJ, Catalano JV, Devos T, Egyed M, Hellmann A, et al. SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in Janus kinase inhibitor-naive patients with myelofibrosis. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(34):3844–50. https://doi.org/10.1200/jco.2017.73.4418.
CAS
Article
Google Scholar
Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5(2):e73–81. https://doi.org/10.1016/s2352-3026(17)30237-5.
Article
PubMed
Google Scholar
Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1(5):643–51. https://doi.org/10.1001/jamaoncol.2015.1590.
Article
PubMed
Google Scholar
Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu RV, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4(7):e317–e24. https://doi.org/10.1016/s2352-3026(17)30088-1.
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Zhang Y, Diamond S, Boer J, Harris JJ, Li Y, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke's encephalopathy. Drug Metab Dispos. 2014;42(10):1656–62. https://doi.org/10.1124/dmd.114.058883.
Article
PubMed
Google Scholar
Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27. https://doi.org/10.1056/NEJMoa1002028.
CAS
Article
PubMed
PubMed Central
Google Scholar
Harrison CN, Mesa RA, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013;162(2):229–39. https://doi.org/10.1111/bjh.12375.
CAS
Article
PubMed
Google Scholar
Mesa RA, Gotlib J, Gupta V, Catalano JV, Deininger MW, Shields AL, et al. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(10):1285–92. https://doi.org/10.1200/jco.2012.44.4489.
CAS
Article
Google Scholar
Mesa RA, Shields A, Hare T, Erickson-Viitanen S, Sun W, Sarlis NJ, et al. Progressive burden of myelofibrosis in untreated patients: assessment of patient-reported outcomes in patients randomized to placebo in the COMFORT-I study. Leuk Res. 2013;37(8):911–6. https://doi.org/10.1016/j.leukres.2013.04.017.
Article
PubMed
Google Scholar
Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol. 2013;161(4):508–16. https://doi.org/10.1111/bjh.12274.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mesa RA, Scherber RM, Geyer HL. Reducing symptom burden in patients with myeloproliferative neoplasms in the era of Janus kinase inhibitors. Leuk Lymphoma. 2015;56(7):1989–99. https://doi.org/10.3109/10428194.2014.983098.
CAS
Article
PubMed
Google Scholar
Mesa RAVS, Gupta V, et al. Improvement in weight and total cholesterol and their association with survival in ruxolitinib-treated patients with myelofibrosis from COMFORT-I. Blood. 2012;120(21):1733.
Google Scholar
Mascarenhas J, Hoffman R. A comprehensive review and analysis of the effect of ruxolitinib therapy on the survival of patients with myelofibrosis. Blood. 2013;121(24):4832–7. https://doi.org/10.1182/blood-2013-02-482232.
CAS
Article
PubMed
Google Scholar
Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes J, Kantarjian HM, et al. Long-term effects of ruxolitinib versus best available therapy on bone marrow fibrosis in patients with myelofibrosis. J Hematol Oncol. 2018;11(1):42. https://doi.org/10.1186/s13045-018-0585-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Vannucchi AM, Verstovsek S, Guglielmelli P, Griesshammer M, Burn TC, Naim A, et al. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study. Ann Hematol. 2017;96(7):1113–20. https://doi.org/10.1007/s00277-017-2994-x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. 2015;126(13):1551–4. https://doi.org/10.1182/blood-2015-03-635235.
CAS
Article
PubMed
PubMed Central
Google Scholar
Verstovsek SGV, Gotlib JR, et al. A pooled overall survival (OS) analysis of 5-year data from the COMFORT-I and COMFORT-II trials of ruxolitinib for the treatment of myelofibrosis (MF). Blood. 2016;128(22):3110–311.
Google Scholar
Heine A, Held SA, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122(7):1192–202. https://doi.org/10.1182/blood-2013-03-484642.
CAS
Article
PubMed
Google Scholar
Rudolph J, Heine A, Quast T, Kolanus W, Trebicka J, Brossart P, et al. The JAK inhibitor ruxolitinib impairs dendritic cell migration via off-target inhibition of ROCK. Leukemia. 2016;30(10):2119–23. https://doi.org/10.1038/leu.2016.155.
CAS
Article
PubMed
Google Scholar
Massa M, Rosti V, Campanelli R, Fois G, Barosi G. Rapid and long-lasting decrease of T-regulatory cells in patients with myelofibrosis treated with ruxolitinib. Leukemia. 2014;28(2):449–51. https://doi.org/10.1038/leu.2013.296.
CAS
Article
PubMed
Google Scholar
Keohane C, Kordasti S, Seidl T, Perez Abellan P, Thomas NS, Harrison CN, et al. JAK inhibition induces silencing of T helper cytokine secretion and a profound reduction in T regulatory cells. Br J Haematol. 2015;171(1):60–73. https://doi.org/10.1111/bjh.13519.
CAS
Article
PubMed
Google Scholar
Parampalli Yajnanarayana S, Stubig T, Cornez I, Alchalby H, Schonberg K, Rudolph J, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015;169(6):824–33. https://doi.org/10.1111/bjh.13373.
CAS
Article
PubMed
Google Scholar
Schonberg K, Rudolph J, Vonnahme M, Parampalli Yajnanarayana S, Cornez I, Hejazi M, et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015;75(11):2187–99. https://doi.org/10.1158/0008-5472.can-14-3198.
Article
PubMed
Google Scholar
Colomba C, Rubino R, Siracusa L, Lalicata F, Trizzino M, Titone L, et al. Disseminated tuberculosis in a patient treated with a JAK2 selective inhibitor: a case report. BMC Res Notes. 2012;5:552. https://doi.org/10.1186/1756-0500-5-552.
Article
PubMed
PubMed Central
Google Scholar
Wysham NG, Sullivan DR, Allada G. An opportunistic infection associated with ruxolitinib, a novel janus kinase 1,2 inhibitor. Chest. 2013;143(5):1478–9. https://doi.org/10.1378/chest.12-1604.
Article
PubMed
PubMed Central
Google Scholar
Caocci G, Murgia F, Podda L, Solinas A, Atzeni S, La Nasa G. Reactivation of hepatitis B virus infection following ruxolitinib treatment in a patient with myelofibrosis. Leukemia. 2014;28(1):225–7. https://doi.org/10.1038/leu.2013.235.
CAS
Article
PubMed
Google Scholar
Goldberg RA, Reichel E, Oshry LJ. Bilateral toxoplasmosis retinitis associated with ruxolitinib. N Engl J Med. 2013;369(7):681–3. https://doi.org/10.1056/NEJMc1302895.
CAS
Article
PubMed
Google Scholar
Wathes R, Moule S, Milojkovic D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N Engl J Med. 2013;369(2):197–8. https://doi.org/10.1056/NEJMc1302135.
CAS
Article
PubMed
Google Scholar
Weinacht KG, Charbonnier LM, Alroqi F, Plant A, Qiao Q, Wu H, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol. 2017;139(5):1629–40.e2. https://doi.org/10.1016/j.jaci.2016.11.022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Porpaczy ETS, Hoelbl-Kovacic A, et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood. 2018;132(7):694–706. Blood. 2019;133(7):768. https://doi.org/10.1182/blood-2019-01-895136.
CAS
Article
PubMed
Google Scholar
Pemmaraju N, Kantarjian H, Nastoupil L, Dupuis M, Zhou L, Pierce S, et al. Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy. Blood. 2019. https://doi.org/10.1182/blood-2019-01-897637.
Bjorn ME, de Stricker K, Kjaer L, Ellemann K, Hasselbalch HC. Combination therapy with interferon and JAK1-2 inhibitor is feasible: proof of concept with rapid reduction in JAK2V617F-allele burden in polycythemia vera. Leuk Res Rep. 2014;3(2):73–5. https://doi.org/10.1016/j.lrr.2014.05.003.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valent P, Kiladjian JJ, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016;30(5):1018–24. https://doi.org/10.1038/leu.2016.12
Excellent review of immunological dysregulation in MPNs.
CAS
Article
PubMed
Google Scholar
Kiladjian JJ, Soret-Dulphy J, Resche-Rigon M, et al. Ruxopeg, a multi-center Bayesian phase 1/2 adaptive randomized trial of the combination of ruxolitinib and pegylated interferon alpha 2a in patients with myeloproliferative neoplasm (MPN)-associated myelofibrosis. Blood. 2018;132:581.
Google Scholar
Daver N, Cortes J, Newberry K, Jabbour E, Zhou L, Wang X, et al. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica. 2015;100(8):1058–63. https://doi.org/10.3324/haematol.2015.126821.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rampal R VS, Devlin S, Stein E, et al. Early results of he phase II study of combined ruxolitinib and thalidomide in patients with myelofibrosis. EHA Learning Center PS1467. 2019.
Masarova L, Verstovsek S, Kantarjian H, Daver N. Immunotherapy based approaches in myelofibrosis. Expert Rev Hematol. 2017;10(10):903–14. https://doi.org/10.1080/17474086.2017.1366853.
CAS
Article
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
CAS
Article
PubMed
Google Scholar
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. https://doi.org/10.1038/nm730.
CAS
Article
PubMed
Google Scholar
Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–36. https://doi.org/10.1182/blood-2008-09-179697.
CAS
Article
PubMed
Google Scholar
Craig RTS, Deininger M, Salama ME. Programmed death ligand (PD-L1) expression is increased in spleens of myelofibrosis patients United States and Canadian Academy of 2016 Annual meeting, Abstract 1353.
Lasho TFC, Kimlinger TK, Zblewski D, Chen D, Patnaik MM, Hanson CA, et al. Expression of CD123 (IL-3R-alpha), a therapeutic target of SL-401, on myeloproliferative neoplasms. Blood. 2014;124:5577.
Google Scholar
Pemmaraju NAH, Gupta V, Schiller GJ, et al. Results from ongoing phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with intermediate or high risk relapsed/refractory myelofibrosis. J Clin Oncol. 2019;37(15_suppl):7058.
Google Scholar
Schischlik FJR, Rosebrock F, et al. Mutational landscape of the transcriptome offers a rich neoantigen resource for immunotherapy of myeloproliferative neoplasms. Blood. 2018;132:3058.
Google Scholar