Skip to main content

Advertisement

Log in

Chronic Myelomonocytic Leukemia: 2018 Update to Prognosis and Treatment

  • Myeloproliferative Neoplasms (B Stein, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic myelomonocytic leukemia (CMML) is a rare and often aggressive myeloid malignancy. Historically, prognostic markers and therapeutic paradigms have been applied from myelodysplastic syndromes (MDS) or myeloproliferative neoplasms (MPNs). Interest has increased recently in developing tailored approaches for the MDS/MPN overlap syndrome of CMML.

Recent Findings

Multiple prognostic scores have been validated specifically for CMML in the past 5 years. These incorporate somatic mutations, with ASXL1 mutations repeatedly correlating with poor prognosis. Accurate prognostication can guide treatment. Hypomethylating agents (HMAs) and curative allogeneic blood or marrow transplantation (BMT) remain the most available standard treatments. Recently, a number of novel approaches using unapproved therapies (i.e., lenalidomide, ruxolitinib, sotatercept, and tipifarnib) have demonstrated some efficacy in CMML.

Summary

Increased recognition and interest in CMML have led to the development of a number of new prognostic models and potential treatment options. Standard treatment options remain limited and clinical trials should be strongly considered whenever available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rollison D, Howlader N, Smith M, Strom S, Merritt W, Ries L, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  2. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 2017;130:126–36.

    Article  CAS  PubMed  Google Scholar 

  3. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121(12):2186–98.

    Article  CAS  PubMed  Google Scholar 

  4. Abdel-Wahab O, Adli M, LaFave L, Gao J, Hricik T, Shih A, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Cai X, Cai C, Wang J, Zhang W, Petersen B, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118(17):4509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity. Cancer Cell. 2018;33(1):44–59 Important study that demonstrates the mechanism of TET2 and NRAS mutations as drivers of myeloid malignancies through activation of mitogen-activating protein kinase (MAPK) by epigenetic silencing. The study also highlights the potential for MAPK inhabitation as a therapeutic strategy.

    Article  CAS  PubMed  Google Scholar 

  7. Chen E, Schneider R, Breyfogle L, Rosen E, Poveromo L, Elf S, et al. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. Blood. 2015;125(2):327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V, et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jankowska A, Makishima H, Tiu R, Szpurka H, Huang Y, Traina F, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood. 2011;118(14):3932–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. JCO. 2013;31(19):2428–36.

    Article  CAS  Google Scholar 

  11. Wang J, Liu Y, Li Z, Du J, Ryu M, Taylor P, et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116(26):5991–6002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel B, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017;31:2815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mughal T, Cross N, Padron E, Tiu R, Savona M, Malcovati L, et al. An International MDS/MPN Working Group’s perspective and recommendations on molecular pathogenesis, diagnosis and clinical characterization of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2015;100(9):1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith A, Mohamedali A, Kulasekararaj A, Lim Z, Gäken J, Lea N, et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood. 2010;116(19):3923–32.

    Article  CAS  PubMed  Google Scholar 

  15. Arber D, Orazi A, Hasserjian R, Thiele J, Borowitz M, LeBeau M, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  16. Patnaik M, Itzykson R, Lasho T, Kosmider O, Finke C, Hanson C, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28(11):2206–12.

    Article  CAS  PubMed  Google Scholar 

  17. Patnaik M, Lasho T, Vijayvargiya P, Finke C, Hanson C, Ketterling R, et al. Prognostic interaction between ASXL1 and TET2 mutations in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bennett J, Catovsky D, Daniel M, Flandrin G, Galton D, Gralnick H, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620.

    Article  CAS  PubMed  Google Scholar 

  19. Vardiman J, Thiele J, Arber D, Brunning R, Borowitz M, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  20. Patnaik M, Wassie E, Lasho T, Hanson C, Ketterling R, Tefferi A. Blast transformation in chronic myelomonocytic leukemia: risk factors, genetic features, survival, and treatment outcome. AJH. 2015;90(5):411–6.

    Google Scholar 

  21. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greenberg P, Cox C, LeBeau M, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  23. Kantarjian H, O'Brien S, Ravandi F, Cortes J, Shan J, Bennett J, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351–61.

    Article  CAS  PubMed  Google Scholar 

  24. Nazha A. Making sense of prognostic models in chronic myelomonocytic leukemia. Curr Hematol Malig Rep. 2018;13(5):341–7.

    Article  PubMed  Google Scholar 

  25. Onida F, Kantarjian H, Smith T, Ball G, Keating M, Estey E, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(3):840–9.

    Article  CAS  PubMed  Google Scholar 

  26. Such E, Cervera J, Costa D, Solé F, Vallespí T, Luño E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96(3):375–83.

    Article  PubMed  Google Scholar 

  27. • Nazha A, Patnaik M, Komrokji R, Al-Issa K, Daver N, Garcia-Manero G, et al. Model heterogeneity in predicting outcomes in patients with chronic myelomonocytic leukemia (CMML): an overestimation of survival in lower-risk group. Blood. 2017;130:4255 As multiple prognostic models have been validated for CMML, this study sought to compare the utility of each model. The predicted prognosis did often vary across models, all models were subject to errors in prediction especially for low risk patients, and no specific model was significantly superior.

    Google Scholar 

  28. Padron E, Garcia-Manero G, Patnaik M, Itzykson R, Lasho T, Nazha A, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;31(5):e333.

    Article  Google Scholar 

  29. Patnaik M, Padron E, LaBorde R, Lasho T, Finke C, Hanson C, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27(7):1504–10.

    Article  CAS  PubMed  Google Scholar 

  30. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, DellaPorta M, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.

    Article  CAS  PubMed  Google Scholar 

  31. • Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17 As the prognostic importance of somatic mutations in CMML has been increasingly recognized, this critical study introduced a prognostic model called the CPSS-mol that incorporates somatic mutations as predictors of decreased overall survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kantarjian H, O'brien S, Cortes J, Giles F, Faderl S, Jabbour E, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106(5):1090–8.

    Article  PubMed  Google Scholar 

  33. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O'Brien S, Cortes J, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109(1):52.

    Article  CAS  PubMed  Google Scholar 

  34. Krishnamurthy P, Lim Z, Nagi W, Kenyon M, Mijovic A, Ireland R, et al. Allogeneic haematopoietic SCT for chronic myelomonocytic leukaemia: a single-centre experience. Bone Marrow Transplant. 2010;45(10):1502–7.

    Article  CAS  PubMed  Google Scholar 

  35. • Kröger N, Eikema D-J, De Wreede L, van Biezen A, Beelen D, Finke J, et al. Comparison of allogeneic stem cell transplantation for transformed acute myeloid leukemia derived from MDS, CMML or MPN. A report of the Chronic Malignancies Working Party of EBMT. Blood. 2016;128:3499 Though allogeneic BMT is widely used in the treatment of CMML, data regarding outcomes is limited to small retrospective series. While also retrospective, this analysis from the EBMT, with a large sample size and long median follow-up of almost 4 years, is one of the most robust studies demonstrating outcomes after transplant.

    Google Scholar 

  36. Kröger N, Zabelina T, Guardiola P, Runde V, Sierra J, VanBiezen A, et al. Allogeneic stem cell transplantation of adult chronic myelomonocytic leukaemia. A report on behalf of the Chronic Leukaemia Working Party of the European Group for blood and marrow transplantation (EBMT). Br J Haematol. 2002;118(1):67–73.

    Article  PubMed  Google Scholar 

  37. Zang D, Deeg H, Gooley T, Anderson J, Anasetti C, Sanders J, et al. Treatment of chronic myelomonocytic leukaemia by allogeneic marrow transplantation. Br J Haematol. 2000;110(1):217–22.

    Article  CAS  PubMed  Google Scholar 

  38. Onida F, Barosi G, Leone G, Malcovati L, Morra E, Santini V, et al. Management recommendations for chronic myelomonocytic leukemia: consensus statements from the SIE, SIES, GITMO groups. Haematologica. 2013;98(9):1344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Padron E, Komrokji R, List A. The clinical management of chronic myelomonocytic leukemia. Clin Adv Hematol Oncol. 2014;12(3):172–8.

    PubMed  Google Scholar 

  40. • Savona M, Malcovati L, Komrokji R, Tiu R, Mughal T, Orazi A, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–65 As an overlap syndrome with characteristics of both MDS and MPNs, CMML responses are not accurately assessed with existing response criteria for MDS and MPNs. Thus, an international consortium established response criteria for MDS/MPN overlap syndromes that are more reliable for CMML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahé B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Français des Myélodysplasies and European CMML Group. Blood. 1996;88(7):2480–7.

    CAS  PubMed  Google Scholar 

  42. • Santini V, Allione B, Zini G, Gioia D, Lunghi M, Poloni A, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia. Leukemia. 2018;32(2):413–8 Hypomethylating agent therapy has become a standard treatment for CMML based largely on clinical trials in MDS that included a small subset of CMML patients. In contrast, this multicenter prospective study was designed specifically to evaluate the treatment of CMML patients with the hypomethylating agent decitabine, and still demonstrated favorable responses that justified the use of this therapy.

    Article  CAS  PubMed  Google Scholar 

  43. Braun T, Itzykson R, Renneville A, deRenzis B, Dreyfus F, Laribi K, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118(14):3824–31.

    Article  CAS  PubMed  Google Scholar 

  44. Aribi A, Borthakur G, Ravandi F, Shan J, Davisson J, Cortes J, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109(4):713.

    Article  CAS  PubMed  Google Scholar 

  45. Adès L, Sekeres M, Wolfromm A, Teichman M, Tiu R, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37(6):609–13.

    Article  CAS  PubMed  Google Scholar 

  46. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Costa R, Abdulhaq H, Haq B, Shadduck R, Latsko J, Zenati M, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117(12):2690–6.

    Article  CAS  PubMed  Google Scholar 

  48. Fianchi L, Criscuolo M, Breccia M, Maurillo L, Salvi F, Musto P, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54(3):658–61.

    Article  CAS  PubMed  Google Scholar 

  49. Pleyer L, Germing U, Sperr W, Linkesch W, Burgstaller S, Stauder R, et al. Azacitidine in CMML: matched-pair analyses of daily-life patients reveal modest effects on clinical course and survival. Leuk Res. 2014;38(4):475–83.

    Article  CAS  PubMed  Google Scholar 

  50. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Montalban-Bravo G, Bose P, Alvarado Y, Daver N, Ravandi F, Borthakur G, et al. Initial results of a phase 2 study of guadecitabine (SGI-110), a novel subcutaneous (sc) hypomethylating agent, for patients with previously untreated intermediate-2 or high risk myelodysplastic syndromes (MDS) or chronic myelomonocytic leukemia (CMML). Blood. 2016;128(346).

  52. Garcia-Manero G, Griffiths E, Roboz G, Busque L, Wells R, Odenike O, et al. A phase 2 dose-confirmation study of oral ASTX727, a combination of oral decitabine with a cytidine deaminase inhibitor (CDAi) cedazuridine (E7727), in subjects with myelodysplastic syndromes (MDS). Blood. 2017;130:4274.

    Google Scholar 

  53. Symeonidis A, vanBiezen A, deWreede L, Piciocchi A, Finke J, Beelen D, et al. Achievement of complete remission predicts outcome of allogeneic haematopoietic stem cell transplantation in patients with chronic myelomonocytic leukaemia. A study of the Chronic Malignancies Working Party of the European Group for blood and marrow transplantation. BJH. 2015;171(2):239–46.

    Article  PubMed  Google Scholar 

  54. Park S, Labopin M, Yakoub-Agha I, Delaunay J, Dhedin N, Deconinck E, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90(5):355–64.

    Article  PubMed  Google Scholar 

  55. Eissa H, Gooley T, Sorror M, Nguyen F, Scott B, Doney K, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. BBMT. 2011;17(6):908–15.

    Google Scholar 

  56. Liu H, Ahn K, Hu Z-H, MehdiHamadani NT, Wirk B, et al. Allogeneic hematopoietic cell transplantation for adult chronic myelomonocytic leukemia. BBMT. 2017;23(5):767–75.

    Google Scholar 

  57. Kongtim P, Popat U, Jimenez A, Gaballa S, ElFakih R, Rondon G, et al. Treatment with hypomethylating agents before allogeneic stem cell transplant improves progression-free survival for patients with chronic myelomonocytic leukemia. BBMT. 2016;22(1):47–53.

    CAS  Google Scholar 

  58. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. NEJM. 2006;355:1456–65.

    Article  CAS  PubMed  Google Scholar 

  59. • Sekeres M, Othus M, List A, Odenike O, Stone R, Gore S, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017;20(35):2745–53 This phase II study suggests that the combination of azacitidine and lenalidomide may be superior to azacitidine alone in the treatment of MDS and CMML. Confirmation of this result in an ongoing phase III study would be expected to change the standard first-line therapy to the combination of hypomethylating agent and lenalidomide.

    Article  Google Scholar 

  60. Pich A, Riera L, Sismondi F, Godio L, Bonino L, Marmont F, et al. JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia. J Clin Pathol. 2009;62(9):798–801.

    Article  CAS  PubMed  Google Scholar 

  61. Harrison C, Kiladjian J-J, Al-Ali H, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. NEJM. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  62. Verstovsek S, Mesa R, Gotlib J, Levy R, Gupta V, DiPersio J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. NEJM. 2012;366(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  63. Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22(15):3746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Platzbecker U, Germing U, Götze K, Kiewe P, Wolff T, Mayer K, et al. Luspatercept increases hemoglobin and reduces transfusion burden in patients with low-intermediate risk myelodysplastic syndromes (MDS): long-term results from phase 2 PACE-MDS study. Blood. 2016;128:3168.

    Google Scholar 

  65. Carrancio S, Markovics J, Wong P, Leisten J, Castiglioni P, Groza M, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. BJH. 2014;165(6):870–82.

    Article  CAS  PubMed  Google Scholar 

  66. Komrokji R, Garcia-Manero G, Ades L, Prebet T, Steensma D, Jurcic J, et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematology. 2018;5(2):e63–72.

    Article  PubMed  Google Scholar 

  67. Patnaik MM, DAS MAS, Luger S, Bejar R, Hobbs GS, DeZern AE, et al. Preliminary results from an open-label, phase 2 study of tipifarnib in chronic myelomonocytic leukemia (CMML). Blood. 2017;130:2963.

    Google Scholar 

  68. Mesa R, Vannucchi A, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematology. 2017;4(5):225–36.

    Article  Google Scholar 

  69. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Padron E, Painter J, Kunigal S, Mailloux A, McGraw K, McDaniel J, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013.

  71. Fukushima N, Minami Y, Kakiuchi S, Kuwatsuka Y, Hayakawa F, Jamieson C, et al. Small-molecule hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci. 2016;107(10):1422–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patnaik M, Gupta V, Gotlib J, Carraway H, Wadleigh M, Schiller G, et al. Results from ongoing phase 2 trial of SL-401 in patients with advanced, high-risk myeloproliferative neoplasms including chronic myelomonocytic leukemia. Blood. 2016;128:4245.

    Google Scholar 

  73. deWitte T, Bowen D, Robin M, Malcovati L, Niederwieser D, Yakoub-Agha I, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129:1753–62.

    Article  CAS  Google Scholar 

  74. Damaj G, Duhamel A, Robin M, Beguin Y, Michallet M, Mohty M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-Francophone des Myélodysplasies. JCO. 2012;30(36):4533–440.

    Article  CAS  Google Scholar 

  75. Yahng S-A, Kim M, Kim T-M, Jeon Y-W, Yoon J-H, Shin S-H, et al. Better transplant outcome with pre-transplant marrow response after hypomethylating treatment in higher-risk MDS with excess blasts. Oncotarget. 2017;8(7):12342–54.

    Article  PubMed  Google Scholar 

  76. Runde V, deWitte T, Arnold R, Gratwohl A, Hermans J, vanBiezen A, et al. Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic Leukemia Working Party of the European Group for blood and marrow transplantation. Bone Marrow Transplant. 1998;21(3):255–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. DeZern.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myeloproliferative Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmariah, H., DeZern, A.E. Chronic Myelomonocytic Leukemia: 2018 Update to Prognosis and Treatment. Curr Hematol Malig Rep 14, 154–163 (2019). https://doi.org/10.1007/s11899-019-00509-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-019-00509-9

Keywords

Navigation