Advertisement

Current Hematologic Malignancy Reports

, Volume 13, Issue 3, pp 212–219 | Cite as

Novel Approaches for the Management of AL Amyloidosis

  • Nisha S. Joseph
  • Jonathan L. Kaufman
Multiple Myeloma (P Kapoor, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Multiple Myeloma

Abstract

Purpose of Review

Light-chain-associated (AL) amyloidosis is a rare disease with a poor prognosis. However, we have made recent strides in more accurate diagnosis and effective treatment. Here, we discuss the most recent updates and advancements during the past year in the diagnosis, prognostication, and management of AL amyloidosis both in the upfront and relapsed setting.

Recent Findings

New imaging modalities, such as cardiac magnetic resonance (CMR) and use of fluorine-labeled radiotracers, are emerging as an important diagnostic tool in conjunction with biomarkers in the diagnosis, prognosis, and monitoring of the effects of therapy. In addition, ongoing evaluation of plasma cell-directed therapeutics, including daratumumab, pomalidomide, and ixazomib, as well as promising targeted novel therapies, such as the monoclonal antibody NEOD001, are in development.

Summary

In conclusion, incorporating the use of plasma cell-directed therapy and novel agents targeting the amyloid deposits itself hold enormous potential in achieving improved outcomes in AL amyloidosis.

Keywords

Amyloid Biomarkers Systemic Plasma cell disorder Light chain type 

Notes

Compliance with Ethical Standards

Conflict of Interest

Jonathan L. Kaufman is a consultant for Amgen, Abbvie, Takeda, Sutro, Roche, and Seattle Genetics. The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Nuvolone M, Merlini G. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis. Expert Opin Ther Targets. 2017;21(12):1095–110.CrossRefPubMedGoogle Scholar
  2. 2.
    Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O'Fallon WM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood. 1992;79(7):1817–22.PubMedGoogle Scholar
  3. 3.
    Kaufman GP, Dispenzieri A, Gertz MA, Lacy MQ, Buadi FK, Hayman SR, et al. Kinetics of organ response and survival following normalization of the serum free light chain ratio in AL amyloidosis. Am J Hematol. 2015;90(3):181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dispenzieri A, Gertz MA, Kyle RA, Lacy MQ, Burritt MF, Therneau TM, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22(18):3751–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–95.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Swiger KJ, Friedman EA, Brittain EL, Tomasek KA, Huang S, Su YR, et al. Plasma hepatocyte growth factor is a novel marker of AL cardiac amyloidosis. Amyloid. 2016;23(4):242–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Kristen AV, Rosenberg M, Lindenmaier D, Merkle C, Steen H, Andre F, et al. Osteopontin: a novel predictor of survival in patients with systemic light-chain amyloidosis. Amyloid. 2014;21(3):202–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Dispenzieri A, Gertz MA, Saenger A, Kumar SK, Lacy MQ, Buadi FK, et al. Soluble suppression of tumorigenicity 2 (sST2), but not galactin-3, adds to prognostication in patients with systemic AL amyloidosis independent of NT-proBNP and troponin T. Am J Hematol. 2015;90(6):524–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Andrikopoulou E, Bhambhvani P. Nuclear imaging of cardiac amyloidosis. J Nucl Cardiol. 2017;Google Scholar
  10. 10.
    Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging. 2014;7(3):552–62.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Stork S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(6):1066–72.CrossRefPubMedGoogle Scholar
  12. 12.
    Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84.CrossRefPubMedGoogle Scholar
  13. 13.
    Bravo PE, Dorbala S. Targeted nuclear imaging probes for cardiac amyloidosis. Curr Cardiol Rep. 2017;19(7):59.CrossRefPubMedGoogle Scholar
  14. 14.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Cappelli F, Gallini C, di Mario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-Hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2017;Google Scholar
  16. 16.
    Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol. 2016;25(5):413–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Boynton SJ, Geske JB, Dispenzieri A, Syed IS, Hanson TJ, Grogan M, et al. LGE provides incremental prognostic information over serum biomarkers in AL cardiac amyloidosis. JACC Cardiovasc Imaging. 2016;9(6):680–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70(4):466–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52(8):1210–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaufman GP, Schrier SL, Lafayette RA, Arai S, Witteles RM, Liedtke M. Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood. 2017;130(7):900–2.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sanchorawala V, et al. Safety and tolerability of daratumumab in patients with relapsed light chain (AL) amyloidosis: preliminary results of a phase II study. Blood. 2017;130Google Scholar
  22. 22.
    Roussel M, et al. A prospective phase II of daratumumab in previously-treated systemic light chain (AL) amyloidosis. Blood. 2017;130Google Scholar
  23. 23.
    Sanchorawala V, Palladini G, Kukreti V, Zonder JA, Cohen AD, Seldin DC, et al. A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood. 2017;130(5):597–605.CrossRefPubMedGoogle Scholar
  24. 24.
    Palladini G, Milani P, Foli A, Basset M, Russo F, Perlini S, et al. A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis. Blood. 2017;129(15):2120–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Sanchorawala V, Shelton AC, Lo S, Varga C, Sloan JM, Seldin DC. Pomalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 1 and 2 trial. Blood. 2016;128(8):1059–62.CrossRefPubMedGoogle Scholar
  26. 26.
    Leung N, Thome SD, Dispenzieri A. Venetoclax induced a complete response in a patient with AL amyloidosis plateaued on CyBorD. Haematologica. 2018;103:e135–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gertz MA, Landau HJ, Weiss BM. Organ response in patients with AL amyloidosis treated with NEOD001, an amyloid-directed monoclonal antibody. Am J Hematol. 2016;91(12):E506–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gertz MA, Landau H, Comenzo RL, Seldin D, Weiss B, Zonder J, et al. First-in-human phase I/II study of NEOD001 in patients with light chain amyloidosis and persistent organ dysfunction. J Clin Oncol. 2016;34(10):1097–103.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wechalekar AD, Whelan C. Encouraging impact of doxycycline on early mortality in cardiac light chain (AL) amyloidosis. Blood Cancer J. 2017;7(3):e546.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kumar S, et al. Doxycycline used as post transplant antibacterial prophylaxis improves survival in patients with light chain amyloidosis undergoing autologous stem cell transplantation. Blood. 2012;120Google Scholar
  31. 31.
    D'Souza A, M.e.a. Rationale and design of DUAL study: Doxycycline to Upgrade response in light chain (AL) amyloidosis (DUAL): a phase 2 pilot study of a two-pronged approach of prolonged doxycycline with plasma cell-directed therapy in the treatment of AL amyloidosis. Contemp Clin Trials, 2017; 8: 33–38.Google Scholar
  32. 32.
    Chari, A.et al. Subcutaneous delivery of daratumumab in patients (pts) with relapsed or refractory multiple myeloma (RRMM): Pavo, an open-label, multicenter, dose escalation phase 1b study. 2017.Google Scholar
  33. 33.
    Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar S, Kaufman JL, Gasparetto C, Mikhael J, Vij R, Pegourie B, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017;130(22):2401–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Kaufman J, et al. Phase 1 study of venetoclax in combination with dexamethasone as targeted therapy for t(11;14) relapsed/refractory mulitple myeloma, in ASH. Atlanta, GA.Google Scholar
  36. 36.
    Moreau P, Chanan-Khan A, Roberts AW, Agarwal AB, Facon T, Kumar S, et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood. 2017;130(22):2392–400.CrossRefPubMedGoogle Scholar
  37. 37.
    Bochtler T, Hegenbart U, Kunz C, Granzow M, Benner A, Seckinger A, et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol. 2015;33(12):1371–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Rosenzweig M, Urak R, Walter M, Lim L, Sanchez JF, Krishnan A, et al. Preclinical data support leveraging CS1 chimeric antigen receptor T-cell therapy for systemic light chain amyloidosis. Cytotherapy. 2017;19(7):861–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Solomon A, Weiss DT, Wall JS. Therapeutic potential of chimeric amyloid-reactive monoclonal antibody 11-1F4. Clin Cancer Res. 2003;9(10 Pt 2):3831S–8S.PubMedGoogle Scholar
  40. 40.
    Wall JS, Kennel SJ, Stuckey AC, Long MJ, Townsend DW, Smith GT, et al. Radioimmunodetection of amyloid deposits in patients with AL amyloidosis. Blood. 2010;116(13):2241–4.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Edwards CV, et al. Final analysis of the phase 1a/b study of chimeric fibril-reactive monoclonal antibody 11-1F4 in patients with relapsed or refractory AL amyloidosis. Blood. 2017;130Google Scholar
  42. 42.
    Edwards CV, Gould J, Langer AL, Mapara M, Radhakrishnan J, Maurer MS, et al. Interim analysis of the phase 1a/b study of chimeric fibril-reactive monoclonal antibody 11-1F4 in patients with AL amyloidosis. Amyloid. 2017;24(sup1):58–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med. 2015;373(12):1106–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Meshitsuka S, Shingaki S, Hotta M, Goto M, Kobayashi M, Ukawa Y, et al. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis. Int J Hematol. 2017;105(3):295–308.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations