Advertisement

Current Hematologic Malignancy Reports

, Volume 13, Issue 2, pp 114–124 | Cite as

Common Adverse Effects of Novel Therapies for Multiple Myeloma (MM) and Their Management Strategies

  • Kristen B. McCullough
  • Miriam A. Hobbs
  • Jithma P. Abeykoon
  • Prashant Kapoor
Multiple Myeloma (P Kapoor, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Multiple Myeloma

Abstract

Purpose of Review

The purpose of this review was to evaluate management strategies for common adverse effects of novel therapies in multiple myeloma (MM), including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, and a histone deacetylase inhibitor.

Recent Findings

There are several adverse effects that occur across multiple classes of antimyeloma drugs, including rash, peripheral neuropathy, infusion reactions, and cardiotoxicity, but most can be managed without complete discontinuation of the agent or abandonment of the class. Additionally, several agents have critically important drug-drug interactions or dose-modification implications in hepatic or renal insufficiency that can be easily overlooked, and exacerbate adverse effects.

Summary

As treatment of MM moves from fixed-duration traditional chemotherapy to novel agent-based regimens, commonly administered continuously until disease progression or intolerable toxicities, providers must adopt their management strategies for both acute and long-term adverse effects. Early and frequent monitoring for therapy-related complications, dose adjustments when needed, and timely treatment for toxicities are all important steps toward ensuring longevity of treatment from a limited array of therapeutic options that currently exist for a disease with a relapsing and remitting course.

Keywords

Toxicities Immunomodulatory drugs Proteasome inhibitors Daratumumab Elotuzumab Panobinostat 

Notes

Compliance with Ethical Standards

Conflict of Interest

Kristen B. McCullough, Miriam A. Hobbs, and Jithma P. Abeykoon each declare no potential conflicts of interest.

Prashant Kapoor reports grants from Takeda, Amgen, and Sanofi, of which he is a Principal Investigator of trials. Dr. Kapoor is a section editor for Current Hematologic Malignancy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.  https://doi.org/10.3322/caac.21387.CrossRefPubMedGoogle Scholar
  2. 2.
    •• Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19.  https://doi.org/10.1056/NEJMoa1506348. Daratumumab is a human antibody approved for the treatment of relapsed/refractory multiple myeloma. This phase I study characterized efficacy while also outlining the important safety concerns related to infusion reactions. Subsequent studies have combined it with several different classes to provide prolonged survival opportunities.CrossRefPubMedGoogle Scholar
  3. 3.
    • Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral Ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34.  https://doi.org/10.1056/NEJMoa1516282. This is the first all oral regimen for the treatment of relapsed/refractory mutiple myeloma and ixazomib is the first oral proteasome inhibitor.CrossRefPubMedGoogle Scholar
  4. 4.
    Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–31.  https://doi.org/10.1056/NEJMoa1607751.CrossRefPubMedGoogle Scholar
  5. 5.
    Celgene. REVLIMID® (lenalidomide) capsules, for oral use. Prescribing information. 2017. http://media.celgene.com/content/uploads/revlimid-pi.pdf. Accessed 13 Oct 2017.
  6. 6.
    Celgene. POMALYST® (pomalidomide) capsules, for oral use. Prescribing information. 2017. http://media.celgene.com/content/uploads/pomalyst-pi.pdf. Accessed 13 Oct 2017.
  7. 7.
    Celgene. THALOMID® (thalidomide) capsules, for oral use. Prescribing information. 2017. http://media.celgene.com/content/uploads/thalomid-pi.pdf. Accessed 13 Oct 2017.
  8. 8.
    Takeda. VELCADE® (bortezomib) for injection, for intravenous use. Prescribing information. 2017. http://www.velcade.com/files/PDFs/VELCADE_PRESCRIBING_INFORMATION.pdf. Accessed 13 Oct 2017.
  9. 9.
    Amgen. KYPROLIS® (carfilzomib) for injection, for intravenous use. Prescribing information. 2017. http://pi.amgen.com/~/media/amgen/repositorysites/pi-amgen-com/kyprolis/kyprolis_pi.pdf. Accessed 13 Oct 2017.
  10. 10.
    Takeda. NINLARO® (ixazomib) capsules, for oral use. Prescribing information. 2017. https://www.ninlaro.com/prescribing-information.pdf. Accessed 13 Oct 2017.
  11. 11.
    Novartis. FARYDAK® (panobinostat) capsules, for oral use. Prescribing information. 2017. https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/farydak.pdf. Accessed 13 Oct 2017.
  12. 12.
    Janssen. DARZALEX® (daratumumab) for injection, for intravenous use. Prescribing information. 2017. https://www.darzalex.com/sites/www.darzalex.com/files/darzalex-prescribing-information.pdf. Accessed 13 Oct 2017.
  13. 13.
    Bristol-Myers Squibb. EMPLICITI® (elotuzumab) for injection, for intravenous use. Prescribing information 2017. https://packageinserts.bms.com/pi/pi_empliciti.pdf. Accessed 13 Oct 2017.
  14. 14.
    Nardone B, Wu S, Garden BC, West DP, Reich LM, Lacouture ME. Risk of rash associated with lenalidomide in cancer patients: a systematic review of the literature and meta-analysis. Clin Lymphoma Myeloma Leuk. 2013;13(4):424–9.  https://doi.org/10.1016/j.clml.2013.03.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Sviggum HP, Davis MP, Rajkumar S, Dispenzieri A. Dermatologic adverse effects of lenalidomide therapy for amyloidosis and multiple myeloma. Arch Dermatol. 2006;142(10):1298–302.  https://doi.org/10.1001/archderm.142.10.1298.CrossRefPubMedGoogle Scholar
  16. 16.
    Barley K, He W, Agarwal S, Jagannath S, Chari A. Outcomes and management of lenalidomide-associated rash in patients with multiple myeloma. Leuk Lymphoma. 2016;57(11):2510–5.  https://doi.org/10.3109/10428194.2016.1151507.CrossRefPubMedGoogle Scholar
  17. 17.
    Tinsley SM, Kurtin SE, Ridgeway JA. Practical management of lenalidomide-related rash. Clin Lymphoma Myeloma Leuk. 2015;15(Suppl):S64–9.  https://doi.org/10.1016/j.clml.2015.02.008.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee MJ, Wickner P, Fanning L, Schlossman R, Richardson P, Laubach J, et al. Lenalidomide desensitization for delayed hypersensitivity reactions in 5 patients with multiple myeloma. Br J Haematol. 2014;167(1):127–31.  https://doi.org/10.1111/bjh.12925.CrossRefPubMedGoogle Scholar
  19. 19.
    Seki JT, Sakurai N, Lam W, Reece DE. Pomalidomide desensitization in a patient hypersensitive to immunomodulating agents. Curr Oncol. 2017;24(4):e328–e32.  https://doi.org/10.3747/co.24.3572.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cavaletti G, Jakubowiak AJ. Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent studies. Leuk Lymphoma. 2010;51(7):1178–87.  https://doi.org/10.3109/10428194.2010.483303.CrossRefPubMedGoogle Scholar
  21. 21.
    Voorhees PM, Laubach J, Anderson KC, Richardson PG. Peripheral neuropathy in multiple myeloma patients receiving lenalidomide, bortezomib, and dexamethasone (RVD) therapy. Blood. 2013;121(5):858.  https://doi.org/10.1182/blood-2012-11-465765.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Delforge M, Blade J, Dimopoulos MA, Facon T, Kropff M, Ludwig H, et al. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol. 2010;11(11):1086–95.  https://doi.org/10.1016/s1470-2045(10)70068-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Richardson PG, Delforge M, Beksac M, Wen P, Jongen JL, Sezer O, et al. Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia. 2012;26(4):595–608.  https://doi.org/10.1038/leu.2011.346.CrossRefPubMedGoogle Scholar
  24. 24.
    Dimopoulos MA, Mateos MV, Richardson PG, Schlag R, Khuageva NK, Shpilberg O, et al. Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib-melphalan-prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study. Eur J Haematol. 2011;86(1):23–31.  https://doi.org/10.1111/j.1600-0609.2010.01533.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Broyl A, Corthals SL, Jongen JL, van der Holt B, Kuiper R, de Knegt Y, et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 2010;11(11):1057–65.  https://doi.org/10.1016/s1470-2045(10)70206-0.CrossRefPubMedGoogle Scholar
  26. 26.
    Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12(5):431–40.  https://doi.org/10.1016/s1470-2045(11)70081-x.CrossRefPubMedGoogle Scholar
  27. 27.
    Merz M, Salwender H, Haenel M, Mai EK, Bertsch U, Kunz C, et al. Subcutaneous versus intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG-MM5 trial. Haematologica. 2015;100(7):964–9.  https://doi.org/10.3324/haematol.2015.124347.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hu B, Zhou Q, Wu T, Zhuang L, Yi L, Cao J, et al. Efficacy and safety of subcutaneous versus intravenous bortezomib in multiple myeloma: a meta-analysis. Int J Clin Pharmacol Ther. 2017;55(4):329–38.  https://doi.org/10.5414/cp202714.CrossRefPubMedGoogle Scholar
  29. 29.
    Richardson PG, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau JL, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol. 2009;144(6):895–903.  https://doi.org/10.1111/j.1365-2141.2008.07573.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Hashimoto N, Yokoyama K, Sadahira K, Ueda T, Tsukada Y, Okamoto S. Itraconazole may increase the risk of early-onset bortezomib-induced peripheral neuropathy. Int J Hematol. 2012;96(6):758–63.  https://doi.org/10.1007/s12185-012-1224-5.CrossRefPubMedGoogle Scholar
  31. 31.
    Bringhen S, Larocca A, Rossi D, Cavalli M, Genuardi M, Ria R, et al. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood. 2010;116(23):4745–53.  https://doi.org/10.1182/blood-2010-07-294983.CrossRefPubMedGoogle Scholar
  32. 32.
    Siegel D, Martin T, Nooka A, Harvey RD, Vij R, Niesvizky R, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98(11):1753–61.  https://doi.org/10.3324/haematol.2013.089334.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mileshkin L, Prince HM. The troublesome toxicity of peripheral neuropathy with thalidomide. Leuk Lymphoma. 2006;47(11):2276–9.  https://doi.org/10.1080/10428190600948303.CrossRefPubMedGoogle Scholar
  34. 34.
    • Delforge M, Ludwig H. How I manage the toxicities of myeloma drugs. Blood. 2017;129(17):2359–67.  https://doi.org/10.1182/blood-2017-01-725705. This case-based review of toxicity management for current providers in multiple myeloma includes newer agents and a range of toxicities.CrossRefPubMedGoogle Scholar
  35. 35.
    San Miguel J, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66.  https://doi.org/10.1016/s1470-2045(13)70380-2.CrossRefGoogle Scholar
  36. 36.
    Dimopoulos MA, Palumbo A, Corradini P, Cavo M, Delforge M, Di Raimondo F, et al. Safety and efficacy of pomalidomide plus low-dose dexamethasone in STRATUS (MM-010): a phase 3b study in refractory multiple myeloma. Blood. 2016;128(4):497–503.  https://doi.org/10.1182/blood-2016-02-700872.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal M, Stadtmauer EA, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia. 2009;23(11):2147–52.  https://doi.org/10.1038/leu.2009.147.CrossRefPubMedGoogle Scholar
  38. 38.
    Beijers AJ, Jongen JL, Vreugdenhil G. Chemotherapy-induced neurotoxicity: the value of neuroprotective strategies. Neth J Med. 2012;70(1):18–25.PubMedGoogle Scholar
  39. 39.
    Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(18):1941–67.  https://doi.org/10.1200/jco.2013.54.0914.CrossRefPubMedGoogle Scholar
  40. 40.
    Jongen JL, Broijl A, Sonneveld P. Chemotherapy-induced peripheral neuropathies in hematological malignancies. J Neuro-Oncol. 2015;121(2):229–37.  https://doi.org/10.1007/s11060-014-1632-x.CrossRefGoogle Scholar
  41. 41.
    Cartoni C, Brunetti GA, Federico V, Efficace F, Grammatico S, Tendas A, et al. Controlled-release oxycodone for the treatment of bortezomib-induced neuropathic pain in patients with multiple myeloma. Support Care Cancer. 2012;20(10):2621–6.  https://doi.org/10.1007/s00520-012-1511-y.CrossRefPubMedGoogle Scholar
  42. 42.
    Barton DL, Wos EJ, Qin R, Mattar BI, Green NB, Lanier KS, et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer. 2011;19(6):833–41.  https://doi.org/10.1007/s00520-010-0911-0.CrossRefPubMedGoogle Scholar
  43. 43.
    Bao T, Goloubeva O, Pelser C, Porter N, Primrose J, Hester L, et al. A pilot study of acupuncture in treating bortezomib-induced peripheral neuropathy in patients with multiple myeloma. Integr Cancer Ther. 2014;13(5):396–404.  https://doi.org/10.1177/1534735414534729.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pittler MH, Ernst E. Complementary therapies for neuropathic and neuralgic pain: systematic review. Clin J Pain. 2008;24(8):731–3.  https://doi.org/10.1097/AJP.0b013e3181759231.CrossRefPubMedGoogle Scholar
  45. 45.
    Leleu X, Rodon P, Hulin C, Daley L, Dauriac C, Hacini M, et al. MELISSE, a large multicentric observational study to determine risk factors of venous thromboembolism in patients with multiple myeloma treated with immunomodulatory drugs. Thromb Haemost. 2013;110(4):844–51.  https://doi.org/10.1160/th13-02-0140.PubMedGoogle Scholar
  46. 46.
    Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.  https://doi.org/10.1038/sj.leu.2405062.CrossRefPubMedGoogle Scholar
  47. 47.
    Kamat AV. Rivaroxaban is an effective and well tolerated anti thrombotic agent in patients on lenalidomide therapy and in multiple myeloma. Blood. 2014;124(21):5095.Google Scholar
  48. 48.
    Oka S, Takeuchi S, Shiragami H, Hamahata K, Nohgawa M. Successful management of venous thromboembolism with apixaban in a multiple myeloma patient on lenalidomide therapy. Rinsho Ketsueki. 2017;58(1):37–41.  https://doi.org/10.11406/rinketsu.58.37.PubMedGoogle Scholar
  49. 49.
    Palumbo A, Cavo M, Bringhen S, Zamagni E, Romano A, Patriarca F, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011;29(8):986–93.  https://doi.org/10.1200/jco.2010.31.6844.CrossRefPubMedGoogle Scholar
  50. 50.
    Hesketh PJ, Kris MG, Basch E, Bohlke K, Barbour SY, Clark-Snow RA, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(28):3240–61.  https://doi.org/10.1200/jco.2017.74.4789.CrossRefPubMedGoogle Scholar
  51. 51.
    National Cancer Center Network. Antiemesis (Version 2.2017). https://www.nccn.org/professionals/physician_gls/pdf/antiemesis.pdf. Accessed 13 Oct 2017.
  52. 52.
    • San-Miguel JF, Hungria VT, Yoon SS, Beksac M, Dimopoulos MA, Elghandour A, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15(11):1195–206.  https://doi.org/10.1016/s1470-2045(14)70440-1. Panobinostat is the only histone deacetylase inhibitor approved for the treatment of multiple myeloma. This agent has a notably unique drug interaction and adverse effect profile.CrossRefPubMedGoogle Scholar
  53. 53.
    Pawlyn C, Khan MS, Muls A, Sriskandarajah P, Kaiser MF, Davies FE, et al. Lenalidomide-induced diarrhea in patients with myeloma is caused by bile acid malabsorption that responds to treatment. Blood. 2014;124(15):2467–8.  https://doi.org/10.1182/blood-2014-06-583302.CrossRefPubMedGoogle Scholar
  54. 54.
    Watson M, Nooka AK, Gleason C, Valla K, Kaufman JL, Lonial S. Colesevelam hydrochloride for the treatment of Lenalidomide induced diarrhea. Blood. 2014;124(21):5779.Google Scholar
  55. 55.
    Lenihan DJ, Potluri R, Bhandari H, Ranjan S, Chen C. Evaluation of cardiovascular comorbidities among patients with multiple myeloma in the United States. Blood. 2016;128(22):4794.Google Scholar
  56. 56.
    Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287–306.  https://doi.org/10.1016/j.mayocp.2014.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chow EJ, Wong K, Lee SJ, Cushing-Haugen KL, Flowers ME, Friedman DL, et al. Late cardiovascular complications after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(6):794–800.  https://doi.org/10.1016/j.bbmt.2014.02.012.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Grandin EW, Ky B, Cornell RF, Carver J, Lenihan DJ. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21(2):138–44.  https://doi.org/10.1016/j.cardfail.2014.11.008.CrossRefPubMedGoogle Scholar
  59. 59.
    Xiao Y, Yin J, Wei J, Shang Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. PLoS One. 2014;9(1):e87671.  https://doi.org/10.1371/journal.pone.0087671.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Atrash S, Tullos A, Panozzo S, Bhutani M, Van Rhee F, Barlogie B, et al. Cardiac complications in relapsed and refractory multiple myeloma patients treated with carfilzomib. Blood Cancer J. 2015;5(1):e272.  https://doi.org/10.1038/bcj.2014.93.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dimopoulos MA, Roussou M, Gavriatopoulou M, Psimenou E, Ziogas D, Eleutherakis-Papaiakovou E, et al. Cardiac and renal complications of carfilzomib in patients with multiple myeloma. Blood Adv. 2017;1(7):449–54.  https://doi.org/10.1182/bloodadvances.2016003269.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Waxman AJ, Clasen S, Hwang WT, Garfall A, Vogl DT, Carver J, et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol. 2017:e174519.  https://doi.org/10.1001/jamaoncol.2017.4519.
  63. 63.
    Dimopoulos MA, Goldschmidt H, Niesvizky R, Joshua D, Chng WJ, Oriol A, et al. Carfilzomib or bortezomib in relapsed or refractory multiple myeloma (ENDEAVOR): an interim overall survival analysis of an open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(10):1327–37.  https://doi.org/10.1016/s1470-2045(17)30578-8.CrossRefPubMedGoogle Scholar
  64. 64.
    Jain T, Narayanasamy H, Mikhael J, Reeder CB, Bergsagel PL, Mayo A, et al. Reversible cardiotoxicity associated with carfilzomib use in patients with multiple myeloma. Blood. 2016;128(22):2126.Google Scholar
  65. 65.
    Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–66.  https://doi.org/10.1056/NEJMoa1606038.CrossRefPubMedGoogle Scholar
  66. 66.
    Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–81.  https://doi.org/10.1182/blood-2017-05-785246.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chari A, Mark TM, Krishnan A, Stockerl-Goldstein K, Usmani SZ, Londhe A, et al. Use of montelukast to reduce infusion reactions in an early access treatment protocol of daratumumab in United States patients with relapsed or refractory multiple myeloma. Blood. 2016;128(22):2142.Google Scholar
  68. 68.
    Nahi H, Hellemans P, Masterson TJ, Clemens PL, Ahmadi T, Miguel JS, et al. An open-label, dose-escalation phase 1b study of subcutaneous daratumumab with recombinant human hyaluronidase in patients with relapsed or refractory multiple myeloma (PAVO). J Clin Oncol. 2016;34(15_suppl):TPS8071–TPS.  https://doi.org/10.1200/JCO.2016.34.15_suppl.TPS8071.Google Scholar
  69. 69.
    Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.  https://doi.org/10.1182/blood-2011-06-360552.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    • Dimopoulos MA, Lonial S, White D, Moreau P, Palumbo A, San-Miguel J, et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br J Haematol. 2017;178(6):896–905.  https://doi.org/10.1111/bjh.14787. A humanized monoclonal antibody for relapsed/refractory multiple myeloma with fewer infusion reactions than its counterpart, but evidence of prolonged progression free survival.CrossRefPubMedGoogle Scholar
  71. 71.
    Harvey RD. Incidence and management of adverse events in patients with relapsed and/or refractory multiple myeloma receiving single-agent carfilzomib. Clin Pharmacol. 2014;6:87–96.  https://doi.org/10.2147/CPAA.S62512.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jakubowiak AJ. Evolution of carfilzomib dose and schedule in patients with multiple myeloma: a historical overview. Cancer Treat Rev. 2014;40(6):781–90.  https://doi.org/10.1016/j.ctrv.2014.02.005.CrossRefPubMedGoogle Scholar
  73. 73.
    Finnes HD, Kumar S, LaPlant B, Gertz MA, Buadi F, Lacy M, et al. Importance of pharmacovigilance in the era of small molecules: role of pharmacist consultation with ixazomib (IXA) in multiple myeloma (MM). J Clin Oncol. 2016;34(15_suppl):8058.  https://doi.org/10.1200/JCO.2016.34.15_suppl.8058.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kristen B. McCullough
    • 1
  • Miriam A. Hobbs
    • 2
  • Jithma P. Abeykoon
    • 3
  • Prashant Kapoor
    • 2
  1. 1.Department of Pharmacy ServicesMayo ClinicRochesterUSA
  2. 2.Division of HematologyMayo ClinicRochesterUSA
  3. 3.Department of Internal MedicineMayo ClinicRochesterUSA

Personalised recommendations