Skip to main content

Advertisement

Log in

Rethinking Antimicrobial Prophylaxis in the Transplant Patient in the World of Emerging Resistant Organisms—Where Are We Today?

  • Stem Cell Transplantation (R Maziarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of prophylactic antibiotics during the neutropenic period in hematopoietic stem cell transplantation has been the standard of care at most institutions for the past 20 years. We sought to review the benefits and risks of this practice.

Recent Findings

Emerging data has highlighted the potential costs of antibacterial prophylaxis, from selecting for antibiotic resistance to perturbing the microbiome and contributing to increase risk for Clostridium difficile and perhaps graft-versus-host-disease, conditions which may lead to poorer outcomes.

Summary

Though in many studies prophylactic antibiotics improved morbidity and mortality outcomes, the potential harms including antibiotic resistance, Clostridium difficile infection, and alterations of the gut microbiome should be considered. Future studies aimed to better risk-stratify patients and limit the use of broad-spectrum antibiotics are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMT:

Bone marrow transplant

CDI:

Clostridium difficile infection

GVHD:

Graft-versus-host disease

HSCT:

Hematopoietic stem cell transplant

FMT:

Fecal microbiota transplant

References

Papers of particular interest, published recently, have been highlighted as: • If importance •• Of major importance

  1. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52(4):e56–93. https://doi.org/10.1093/cid/cir073.

  2. Klastersky J. Management of fever in neutropenic patients with different risks of complications. Clin Infect Dis. 2004;39(Suppl 1):S32–7. https://doi.org/10.1086/383050.

    Article  PubMed  Google Scholar 

  3. Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med. 1966;64(2):328–40. https://doi.org/10.7326/0003-4819-64-2-328.

    Article  CAS  PubMed  Google Scholar 

  4. Gill FA, Robinson R, Maclowry JD, Levine AS. The relationship of fever, granulocytopenia and antimicrobial therapy to bacteremia in cancer patients. Cancer. 1977;39(4):1704–9. https://doi.org/10.1002/1097-0142(197704)39:4<1704::AID-CNCR2820390447>3.0.CO;2-W.

    Article  CAS  PubMed  Google Scholar 

  5. Schimpff SC. Empiric antibiotic therapy for granulocytopenic cancer patients. Am J Med. 1986;80(5C):13–20.

    CAS  PubMed  Google Scholar 

  6. Lucas KG, Brown AE, Armstrong D, Chapman D, Heller G. The identification of febrile, neutropenic children with neoplastic disease at low risk for bacteremia and complications of sepsis. Cancer. 1996;77(4):791–8. https://doi.org/10.1002/(SICI)1097-0142(19960215)77:4<791::AID-CNCR27>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  7. Gafter-Gvili A, Fraser A, Paul M, van de Wetering M, Kremer L, Leibovici L. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2005:CD004386. doi:https://doi.org/10.1002/14651858.CD004386.pub2.

  8. • Gafter-Gvili A, Fraser A, Paul M, Vidal L, Lawrie TA, van de Wetering MD, et al. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst Rev. 2012;1:CD004386. https://doi.org/10.1002/14651858.CD004386.pub3. An updated meta-analysis to determine if there is a benefit of antibiotic prophylaxis in terms of reduction of mortality compare with placebo.

  9. Frere P, Hermanne JP, Debouge MH, de Mol P, Fillet G, Beguin Y. Bacteremia after hematopoietic stem cell transplantation: incidence and predictive value of surveillance cultures. Bone Marrow Transplant. 2004;33(7):745–9. https://doi.org/10.1038/sj.bmt.1704414.

    Article  CAS  PubMed  Google Scholar 

  10. Frere P, Baron F, Bonnet C, Hafraoui K, Pereira M, Willems E, et al. Infections after allogeneic hematopoietic stem cell transplantation with a nonmyeloablative conditioning regimen. Bone Marrow Transplant. 2006;37(4):411–8. https://doi.org/10.1038/sj.bmt.1705255.

    Article  CAS  PubMed  Google Scholar 

  11. • Dandoy CE, Ardura MI, Papanicolaou GA, Auletta JJ. Bacterial bloodstream infections in the allogeneic hematopoietic cell transplant patient: new considerations for a persistent nemesis. Bone Marrow Transplant. 2017;52:1091–106. https://doi.org/10.1038/bmt.2017.14. A recent review of the burden of bacterial blood stream infections in adult HCT recipients.

    Article  CAS  PubMed  Google Scholar 

  12. Kerr KG. The prophylaxis of bacterial infections in neutropenic patients. J Antimicrob Chemother. 1999;44(5):587–91. https://doi.org/10.1093/jac/44.5.587.

    Article  CAS  PubMed  Google Scholar 

  13. Schimpff SC, Greene WH, Young VM, Fortner CL, Cusack N, Block JB, et al. Infection prevention in acute nonlymphocytic leukemia. Laminar air flow room reverse isolation with oral, nonabsorbable antibiotic prophylaxis. Ann Intern Med. 1975;82(3):351–8. https://doi.org/10.7326/0003-4819-82-3-351.

  14. Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, et al. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant. 1998;21(12):1231–8. https://doi.org/10.1038/sj.bmt.1701238.

  15. Verhoef J. Prevention of infections in the neutropenic patient. Clin Infect Dis. 1993;17(Suppl 2):S359–67. https://doi.org/10.1093/clinids/17.Supplement_2.S359.

    Article  PubMed  Google Scholar 

  16. Maiche AG, Muhonen T. Granulocyte colony-stimulating factor (G-CSF) with or without a quinolone in the prevention of infection in cancer patients. Eur J Cancer. 1993;29A(10):1403–5.

    Article  CAS  PubMed  Google Scholar 

  17. van de Wetering MD, de Witte MA, Kremer LC, Offringa M, Scholten RJ, Caron HN. Efficacy of oral prophylactic antibiotics in neutropenic afebrile oncology patients: a systematic review of randomised controlled trials. Eur J Cancer. 2005;41(10):1372–82. https://doi.org/10.1016/j.ejca.2005.03.006.

    Article  PubMed  Google Scholar 

  18. Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238. https://doi.org/10.1016/j.bbmt.2009.06.019.

  19. • Ullmann AJ, Schmidt-Hieber M, Bertz H, Heinz WJ, Kiehl M, Kruger W, et al. Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016. Ann Hematol. 2016;95:1435–55. https://doi.org/10.1007/s00277-016-2711-1. Updated version of the Infectious Diseases Workng Group of the German Society for Hematology and Medical Oncology guideline.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Galloway-Pena JR, Jenq RR, Shelburne SA. Can consideration of the microbiome improve antimicrobial utilization and treatment outcomes in the oncology patient? Clin Cancer Res. 2017;23:3263–8. https://doi.org/10.1158/1078-0432.CCR-16-3173. Review of the literature on the complicated interactions between antibiotics, the microbiome, and oncology.

    Article  PubMed  Google Scholar 

  21. • Staffas A, Burgos da Silva M, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood. 2017;129:927–33. https://doi.org/10.1182/blood-2016-09-691394. Describing the association of loss of intestinal commensals with broad-spectrum antibiotics and GVHD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckner CD, Clift RA, Sanders JE, Meyers JD, Counts GW, Farewell VT, et al. Protective environment for marrow transplant recipients: a prospective study. Ann Intern Med. 1978;89(6):893–901. https://doi.org/10.7326/0003-4819-89-6-893.

  23. Guiot HF, van den Broek PJ, van der Meer JW, van Furth R. Selective antimicrobial modulation of the intestinal flora of patients with acute nonlymphocytic leukemia: a double-blind, placebo-controlled study. J Infect Dis. 1983;147(4):615–23. https://doi.org/10.1093/infdis/147.4.615.

    Article  CAS  PubMed  Google Scholar 

  24. Karp JE, Merz WG, Hendricksen C, Laughon B, Redden T, Bamberger BJ, et al. Oral norfloxacin for prevention of gram-negative bacterial infections in patients with acute leukemia and granulocytopenia. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1987;106(1):1–7. https://doi.org/10.7326/0003-4819-106-1-1.

  25. Levine AS, Siegel SE, Schreiber AD, Hauser J, Preisler H, Goldstein IM, et al. Protected environments and prophylactic antibiotics. A prospective controlled study of their utility in the therapy of acute leukemia. N Engl J Med. 1973;288(10):477–83. https://doi.org/10.1056/NEJM197303082881001.

  26. Yates JW, Holland JF. A controlled study of isolation and endogenous microbial suppression in acute myelocytic leukemia patients. Cancer. 1973;32(6):1490–8. https://doi.org/10.1002/1097-0142(197312)32:6<1490::AID-CNCR2820320628>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  27. Storring RA, Jameson B, McElwain TJ, Wiltshaw E. Oral non-absorbed antibiotics prevent infection in acute non-lymphoblastic leukaemia. Lancet. 1977;2(8043):837–40.

    Article  CAS  PubMed  Google Scholar 

  28. Buzyn A, Tancrede C, Nitenberg G, Cordonnier C. The CLIOH group. Reflections on gut decontamination in hematology. Clin Microbiol Infect. 1999;5(8):449–56. https://doi.org/10.1111/j.1469-0691.1999.tb00174.x.

    Article  PubMed  Google Scholar 

  29. Lew MA, Kehoe K, Ritz J, Antman KH, Nadler L, Kalish LA, et al. Ciprofloxacin versus trimethoprim/sulfamethoxazole for prophylaxis of bacterial infections in bone marrow transplant recipients: a randomized, controlled trial. J Clin Oncol. 1995;13(1):239–50. https://doi.org/10.1200/JCO.1995.13.1.239.

  30. Cruciani M, Rampazzo R, Malena M, Lazzarini L, Todeschini G, Messori A, et al. Prophylaxis with fluoroquinolones for bacterial infections in neutropenic patients: a meta-analysis. Clin Infect Dis. 1996;23(4):795–805. https://doi.org/10.1093/clinids/23.4.795.

  31. Engels EA, Lau J, Barza M. Efficacy of quinolone prophylaxis in neutropenic cancer patients: a meta-analysis. J Clin Oncol. 1998;16(3):1179–87. https://doi.org/10.1200/JCO.1998.16.3.1179.

    Article  CAS  PubMed  Google Scholar 

  32. Bucaneve G, Micozzi A, Menichetti F, Martino P, Dionisi MS, Martinelli G, et al. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med. 2005;353(10):977–87. https://doi.org/10.1056/NEJMoa044097.

  33. Reuter S, Kern WV, Sigge A, Dohner H, Marre R, Kern P, et al. Impact of fluoroquinolone prophylaxis on reduced infection-related mortality among patients with neutropenia and hematologic malignancies. Clin Infect Dis. 2005;40(8):1087–93. https://doi.org/10.1086/428732.

  34. Stahlmann R, Lode HM. Risks associated with the therapeutic use of fluoroquinolones. Expert Opin Drug Saf. 2013;12(4):497–505. https://doi.org/10.1517/14740338.2013.796362.

    Article  CAS  PubMed  Google Scholar 

  35. Arabyat RM, Raisch DW, McKoy JM, Bennett CL. Fluoroquinolone-associated tendon-rupture: a summary of reports in the Food and Drug Administration’s adverse event reporting system. Expert Opin Drug Saf. 2015;14(11):1653–60. https://doi.org/10.1517/14740338.2015.1085968.

    Article  CAS  PubMed  Google Scholar 

  36. FDA. News Release, “FDA Requests Boxed Warnings on Fluoroquinolone Antimicrobial Drugs”. 2008. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2008/ucm116919.htm.

  37. Ali AK. Peripheral neuropathy and Guillain-Barre syndrome risks associated with exposure to systemic fluoroquinolones: a pharmacovigilance analysis. Ann Epidemiol. 2014;24(4):279–85. https://doi.org/10.1016/j.annepidem.2013.12.009.

    Article  PubMed  Google Scholar 

  38. FDA. Briefing Document, Joint Meeting of the Antimicrobial Drugs Advisory Committee and the Drug Safety and Risk Managment Advisory Committee: The Benefits and Risks of Systemic Fluoroquinolone Antibacterial Drugs for the Treatment of Acute Bacterial Sinusitis (ABS), Acute Bacterial Exacerbation of Chronic Bronchitis in Patients Who Have Chronic Obstructive Pulmonary Disease (ABECB-COPD), and Uncomplicated Urinary Tract Infections (uUTI). 2015/11/5. https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/anti-infectivedrugsadvisorycommittee/ucm467383.pdf. Accessed October 20, 2017.

  39. Janssen Pharmacueticals. Levofloxacin package insert, http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/LEVAQUIN-pi.pdf. 1996. Accessed October 20, 2017.

  40. FDA. Drug Safety Communication – July 2016: FDA Drug Safety Communication: FDA updates warnings for oral and injectable fluoroquinolone antibiotics due to disabling side effects 2016. https://www.fda.gov/downloads/Drugs/DrugSafety/UCM513019.pdf. Accessed October 20, 2017.

  41. FDA. Drug Safety Communications - May 2016 - FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together. 2016. https://www.fda.gov/downloads/Drugs/DrugSafety/UCM500591.pdf. Accessed October 20, 2017.

  42. Fish DN. Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy. 2001;21(10 Part 2):253S–72S. https://doi.org/10.1592/phco.21.16.253S.33993.

    Article  CAS  PubMed  Google Scholar 

  43. van der Linden PD, Sturkenboom MC, Herings RM, Leufkens HM, Rowlands S, Stricker BH. Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids. Arch Intern Med. 2003;163(15):1801–7. https://doi.org/10.1001/archinte.163.15.1801.

    Article  PubMed  Google Scholar 

  44. Collin BA, Leather HL, Wingard JR, Ramphal R. Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis. 2001;33(7):947–53. https://doi.org/10.1086/322604.

    Article  CAS  PubMed  Google Scholar 

  45. Bousquet A, Malfuson JV, Sanmartin N, Konopacki J, MacNab C, Souleau B, et al. An 8-year survey of strains identified in blood cultures in a clinical haematology unit. Clin Microbiol Infect. 2014;20(1):O7–12. https://doi.org/10.1111/1469-0691.12294.

  46. Mikulska M, Del Bono V, Raiola AM, Bruno B, Gualandi F, Occhini D, et al. Blood stream infections in allogeneic hematopoietic stem cell transplant recipients: reemergence of Gram-negative rods and increasing antibiotic resistance. Biol Blood Marrow Transplant. 2009;15(1):47–53. https://doi.org/10.1016/j.bbmt.2008.10.024.

  47. • Macesic N, Morrissey CO, Cheng AC, Spencer A, Peleg AY. Changing microbial epidemiology in hematopoietic stem cell transplant recipients: increasing resistance over a 9-year period. Transpl Infect Dis. 2014;16:887–96. https://doi.org/10.1111/tid.12298. Describing the changing microbial epidemiology of infections after HSCT, with increasingly resistant organisms.

    Article  CAS  PubMed  Google Scholar 

  48. • Hauck CG, Chong PP, Miller MB, Jamieson K, Fine JP, Foster MC, et al. Increasing rates of fluoroquinolone resistance in Escherichia coli isolated from the blood and urine of patients with hematologic malignancies and stem cell transplant recipients. Pathog Immun. 2016;1:234–42. https://doi.org/10.20411/pai.v1i2.115. Over a 16 year period patients with hematologic malignancies and HSCT demonstrated increasing fluoroquinolone (FQ) non-susceptibility rates, raising concerns about fluorquinolone efficacy.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Miles-Jay A, Butler-Wu S, Rowhani-Rahbar A, Pergam SA. Incidence rate of fluoroquinolone-resistant gram-negative rod bacteremia among allogeneic hematopoietic cell transplantation patients during an era of levofloxacin prophylaxis. Biol Blood Marrow Transplant. 2015;21:539–45. https://doi.org/10.1016/j.bbmt.2014.12.006. A longitudinal retrospective study showing the incidence rate of FQ-resistant GNR bacteremias have not changed significantly over time, but such infections are associated with increased mortality compared to FQ-sensitive GNR bacteremias.

    Article  PubMed  Google Scholar 

  50. • Satlin MJ, Walsh TJ. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, and vancomycin-resistant enterococci: three major threats to hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2017; https://doi.org/10.1111/tid.12762. Review article describing three MDR pathogens in HSCT patients.

  51. Bonadio M, Morelli G, Mori S, Riccioni R, Papineschi F, Petrini M. Fluoroquinolone resistance in hematopoietic stem cell transplant recipients with infectious complications. Biomed Pharmacother. 2005;59(9):511–6. https://doi.org/10.1016/j.biopha.2005.06.008.

    Article  CAS  PubMed  Google Scholar 

  52. Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on gram-positive and resistant bacteria. Clin Infect Dis. 1999;29(3):490–4. https://doi.org/10.1086/598620.

    Article  CAS  PubMed  Google Scholar 

  53. Cometta A, Calandra T, Bille J, Glauser MP. Escherichia coli resistant to fluoroquinolones in patients with cancer and neutropenia. N Engl J Med. 1994;330(17):1240–1. https://doi.org/10.1056/NEJM199404283301717.

    Article  CAS  PubMed  Google Scholar 

  54. Timmers GJ, Simoons-Smit AM, Leidekker ME, Janssen JJ, Vandenbroucke-Grauls CM, Huijgens PC. Levofloxacin vs. ciprofloxacin plus phenethicillin for the prevention of bacterial infections in patients with haematological malignancies. Clin Microbiol Infect. 2007;13(5):497–503. https://doi.org/10.1111/j.1469-0691.2007.01684.x.

    Article  CAS  PubMed  Google Scholar 

  55. Sepkowitz KA. Antibiotic prophylaxis in patients receiving hematopoietic stem cell transplant. Bone Marrow Transplant. 2002;29(5):367–71. https://doi.org/10.1038/sj.bmt.1703366.

    Article  CAS  PubMed  Google Scholar 

  56. • Scheich S, Reinheimer C, Brandt C, Wichelhaus TA, Hogardt M, Kempf VAJ, et al. Clinical impact of colonization with multidrug-resistant organisms on outcome after autologous stem cell transplantation: a retrospective single-center study. Biol Blood Marrow Transplant. 2017;23:1455–62. https://doi.org/10.1016/j.bbmt.2017.05.016. Colonization MDRO lead to higher non-relapse mortality (NRM) (25.4% versus 3% (P<0.001) in non-colonized patients).

    Article  PubMed  Google Scholar 

  57. • Averbuch D, Tridello G, Hoek J, Mikulska M, Akan H, Yanez San Segundo L, et al. Antimicrobial resistance in Gram-negative rods causing bacteremia in hematopoietic stem cell transplant patients: intercontinental prospective study of Infectious Diseases Working Party of the European Bone Marrow Transplantation group. Clin Infect Dis. 2017; https://doi.org/10.1093/cid/cix646. Describing the changing microbial epidemiology of gram-negative rod infections after HSCT, with increasingly resistant organisms.

  58. Pagano L, Caira M, Trecarichi EM, Spanu T, Di Blasi R, Sica S, et al. Carbapenemase-producing Klebsiella pneumoniae and hematologic malignancies. Emerg Infect Dis. 2014;20(7):1235–6. https://doi.org/10.3201/eid2007.130094.

  59. Tofas P, Skiada A, Angelopoulou M, Sipsas N, Pavlopoulou I, Tsaousi S, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections in neutropenic patients with haematological malignancies or aplastic anaemia: analysis of 50 cases. Int J Antimicrob Agents. 2016;47(4):335–9. https://doi.org/10.1016/j.ijantimicag.2016.01.011.

  60. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55(7):905–14. https://doi.org/10.1093/cid/cis580.

  61. •• Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82. https://doi.org/10.1182/blood-2014-02-554725. Describing the association of restricted bacterial diversity on mortality after transplant.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taur Y, Jenq RR, Ubeda C, van den Brink M, Pamer EG. Role of intestinal microbiota in transplantation outcomes. Best Pract Res Clin Haematol. 2015;28(2-3):155–61. https://doi.org/10.1016/j.beha.2015.10.013.

    Article  PubMed  PubMed Central  Google Scholar 

  63. •• Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(5):640–5. https://doi.org/10.1016/j.bbmt.2014.01.030. Loss of gut microbial diversity associated with GVHD.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209(5):903–11. https://doi.org/10.1084/jem.20112408.

  65. Beelen DW, Haralambie E, Brandt H, Linzenmeier G, Muller KD, Quabeck K, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood. 1992;80(10):2668–76.

    CAS  PubMed  Google Scholar 

  66. Beelen DW, Elmaagacli A, Muller KD, Hirche H, Schaefer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood. 1999;93:3267–75.

    CAS  PubMed  Google Scholar 

  67. Peled JU, Hanash AM, Jenq RR. Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood. 2016;128(20):2395–402. https://doi.org/10.1182/blood-2016-06-716738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–9. https://doi.org/10.1200/JCO.2016.70.3348.

  69. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21(8):1373–83. https://doi.org/10.1016/j.bbmt.2015.04.016.

  70. • Simms-Waldrip TR, Sunkersett G, Coughlin LA, Savani MR, Arana C, Kim J, et al. Antibiotic-induced depletion of anti-inflammatory clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol Blood Marrow Transplant. 2017;23(5):820–9. https://doi.org/10.1016/j.bbmt.2017.02.004. More on association of depletion of commensals (specifically clostridia) and the development of GVHD.

    Article  CAS  PubMed  Google Scholar 

  71. Alonso CD, Marr KA. Clostridium difficile infection among hematopoietic stem cell transplant recipients: beyond colitis. Curr Opin Infect Dis. 2013;26:326–31. https://doi.org/10.1097/QCO.0b013e3283630c4c.

    PubMed  PubMed Central  Google Scholar 

  72. Alonso CD, Treadway SB, Hanna DB, Huff CA, Neofytos D, Carroll KC, et al. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2012;54(8):1053–63. https://doi.org/10.1093/cid/cir1035.

  73. Kamboj M, Xiao K, Kaltsas A, Huang YT, Sun J, Chung D, et al. Clostridium difficile infection after allogeneic hematopoietic stem cell transplant: strain diversity and outcomes associated with NAP1/027. Biol Blood Marrow Transplant. 2014;20(10):1626–33. https://doi.org/10.1016/j.bbmt.2014.06.025.

  74. Lee YJ, Arguello ES, Jenq RR, Littmann E, Kim GJ, Miller LC, et al. Protective factors in the intestinal microbiome against Clostridium difficile infection in recipients of allogeneic hematopoietic stem cell transplantation. J Infect Dis. 2017;215(7):1117–23. https://doi.org/10.1093/infdis/jix011.

  75. Herbers AH, de Haan AF, van der Velden WJ, Donnelly JP, Blijlevens NM. Mucositis not neutropenia determines bacteremia among hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2014;16(2):279–85. https://doi.org/10.1111/tid.12195.

    Article  CAS  PubMed  Google Scholar 

  76. • Heidenreich D, Kreil S, Nolte F, Reinwald M, Hofmann WK, Klein SA. Allogeneic hematopoietic cell transplantation without fluconazole and fluoroquinolone prophylaxis. Ann Hematol. 2016;95:287–93. https://doi.org/10.1007/s00277-015-2535-4. European study reviewing outcomes of HSCT without fluconazole and fluoroquinolone prophylaxis.

    Article  CAS  PubMed  Google Scholar 

  77. Weber D, Oefner PJ, Dettmer K, Hiergeist A, Koestler J, Gessner A, et al. Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51(8):1087–92. https://doi.org/10.1038/bmt.2016.66.

  78. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120(12):4332–41. https://doi.org/10.1172/JCI43918.

  79. Montassier E, Al-Ghalith GA, Ward T, Corvec S, Gastinne T, Potel G, et al. Pretreatment gut microbiome predicts chemotherapy-related bloodstream infection. Genome Med. 2016;8(1):49. https://doi.org/10.1186/s13073-016-0301-4.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chien JW, Boeckh MJ, Hansen JA, Clark JG. Lipopolysaccharide binding protein promoter variants influence the risk for Gram-negative bacteremia and mortality after allogeneic hematopoietic cell transplantation. Blood. 2008;111(4):2462–9. https://doi.org/10.1182/blood-2007-09-101709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guinan EC, Palmer CD, Mancuso CJ, Brennan L, Stoler-Barak L, Kalish LA, et al. Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun. 2014;20(7):697–711. https://doi.org/10.1177/1753425913505122.

  82. Mullighan CG, Heatley S, Doherty K, Szabo F, Grigg A, Hughes TP, et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood. 2002;99(10):3524–9. https://doi.org/10.1182/blood.V99.10.3524.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy A. Taplitz.

Ethics declarations

Conflict of Interest

Lucy E. Horton declares no potential conflicts of interest.

Nina M. Haste reports that spouse (Brandon Taylor, PhD) is employed by Novartis.

Randy A. Taplitz is on the advisory board for Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Stem Cell Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horton, L.E., Haste, N.M. & Taplitz, R.A. Rethinking Antimicrobial Prophylaxis in the Transplant Patient in the World of Emerging Resistant Organisms—Where Are We Today?. Curr Hematol Malig Rep 13, 59–67 (2018). https://doi.org/10.1007/s11899-018-0435-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-018-0435-0

Keywords

Navigation