Current Hematologic Malignancy Reports

, Volume 12, Issue 6, pp 547–556 | Cite as

The Prognostic Significance of Measurable (“Minimal”) Residual Disease in Acute Myeloid Leukemia

  • Francesco BuccisanoEmail author
  • Christopher S. Hourigan
  • Roland B. Walter
Acute Myeloid Leukemias (H Erba, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Acute Myeloid Leukemias


Purpose of Review

The purpose of this review was to evaluate recent literature on detection methodologies for, and prognostic significance of, measurable (“minimal”) residual disease (MRD) in acute myeloid leukemia (AML).

Recent Findings

There is no “one-fits-all” approach to MRD testing in AML. Most exploited to date are methods relying on immunophenotypic aberrancies (identified via multiparameter flow cytometry) or genetic abnormalities (identified via PCR-based assays). Current methods have important shortcomings, including the lack of assay platform standardization/harmonization across laboratories. In parallel to refinements of existing technologies and data analysis/interpretation, new methodologies (e.g., next-generation sequencing-based assays) are emerging that eventually may complement or replace existing ones.


This dynamic evolution of MRD testing has complicated comparisons between individual studies. Nonetheless, an ever-growing body of data demonstrates that a positive MRD test at various time points throughout chemotherapy and hematopoietic cell transplantation identifies patients at particularly high risks of disease recurrence and short survival even after adjustment for other risk factors.


Acute myeloid leukemia Flow cytometry Minimal residual disease Next-generation sequencing Polymerase chain reaction Prognostication 



R.B.W. is a Leukemia & Lymphoma Society Scholar in Clinical Research. This work was supported in part by the Intramural Research Program of the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Compliance with Ethical Standards

Conflict of Interest

Francesco Buccisano and Roland B. Walter each report no conflict of interest.

Christopher S. Hourigan receives research funding from Merck Sharp & Dohme and SELLAS Life Sciences Group AG.

Human and Animal Rights and Informed Consent

This article does not contain any otherwise unpublished studies with human subjects or animals that were performed by the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bisel HF. Letter to the editor: criteria for the evaluation of response to treatment in acute leukemia. Blood. 1956;11(7):676–7.Google Scholar
  2. 2.
    • Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90. Comprehensive review on MRD-testing in AML. CrossRefPubMedGoogle Scholar
  3. 3.
    Hagenbeek A, ACM M. Kinetics of minimal residual disease in a rat model for human acute myelocytic leukemia. In: Baum SJ, Ledney GD, van Bekkum DW, editors. Experimental hematology today. New York: Springer; 1980. p. 215–21.Google Scholar
  4. 4.
    Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41.CrossRefPubMedGoogle Scholar
  5. 5.
    •• Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. State-of-the art guidelines on diagnosis and management of adult patients with AML, written by international group of experts. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10(8):460–71.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for “prime time”? Blood. 2014;124(23):3345–55.CrossRefPubMedGoogle Scholar
  8. 8.
    Hokland P, Ommen HB, Mulé MP, Hourigan CS. Advancing the minimal residual disease concept in acute myeloid leukemia. Semin Hematol. 2015;52(3):184–92.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ommen HB. Monitoring minimal residual disease in acute myeloid leukaemia: a review of the current evolving strategies. Ther Adv Hematol. 2016;7(1):3–16.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ravandi F, Jorgensen JL. Monitoring minimal residual disease in acute myeloid leukemia: ready for prime time? J Natl Compr Cancer Netw. 2012;10(8):1029–36.CrossRefGoogle Scholar
  11. 11.
    Duncavage EJ, Tandon B. The utility of next-generation sequencing in diagnosis and monitoring of acute myeloid leukemia and myelodysplastic syndromes. Int J Lab Hematol. 2015;37(Suppl 1):115–21.CrossRefPubMedGoogle Scholar
  12. 12.
    • Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47–53. Comprehensive review on methodological aspects of flow cytometry-based detection of MRD in AML and other hematologic malignancies. CrossRefPubMedGoogle Scholar
  13. 13.
    Bahia DM, Yamamoto M, Chauffaille Mde L, Kimura EY, Bordin JO, Filgueiras MA, et al. Aberrant phenotypes in acute myeloid leukemia: a high frequency and its clinical significance. Haematologica. 2001;86(8):801–6.PubMedGoogle Scholar
  14. 14.
    Zelezníková T, Babusíková O. The impact of cell heterogeneity and immunophenotypic changes on monitoring minimal residual disease in acute myeloid leukemia. Neoplasma. 2006;53(6):500–6.PubMedGoogle Scholar
  15. 15.
    Voskova D, Schnittger S, Schoch C, Haferlach T, Kern W. Use of five-color staining improves the sensitivity of multiparameter flow cytomeric assessment of minimal residual disease in patients with acute myeloid leukemia. Leuk Lymphoma. 2007;48(1):80–8.CrossRefPubMedGoogle Scholar
  16. 16.
    van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21(8):1700–7.CrossRefPubMedGoogle Scholar
  17. 17.
    • Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, Scholten WJ, Snel AN, Veldhuizen D, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia. 2016;30(2):439–46. Article describing simplified flow cytometry-based assay suitable for MRD testing in AML. PubMedGoogle Scholar
  18. 18.
    Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a “moving target” for detection of residual disease. Cytometry B Clin Cytom. 2014;86(1):3–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood. 2013;122(6):1088–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Keeney M, Halley JG, Rhoads DD, Ansari MQ, Kussick SJ, Karlon WJ, et al. Marked variability in reported minimal residual disease lower level of detection of 4 hematolymphoid neoplasms: a survey of participants in the College of American Pathologists flow cytometry proficiency testing program. Arch Pathol Lab Med. 2015;139(10):1276–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Kalina T, Flores-Montero J, van der Velden VHJ, Martin-Ayuso M, Böttcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, et al. Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium. Sci Rep. 2016;6:20686.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VH, Novakova M, et al. Quality assessment program for EuroFlow protocols: summary results of four-year (2010-2013) quality assurance rounds. Cytometry A. 2015;87(2):145–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57.CrossRefPubMedGoogle Scholar
  25. 25.
    • Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29–41. Comprehensive review on genetics of younger adults with AML. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    • Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33. Pivotal study demonstrating prognostic value of PCR-based MRD testing in NPM1-mutated AML. CrossRefPubMedGoogle Scholar
  27. 27.
    Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201.CrossRefPubMedGoogle Scholar
  28. 28.
    Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, et al. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res. 2006;12(8):2434–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Goswami M, McGowan KS, Lu K, Jain N, Candia J, Hensel NF, et al. A multigene array for measurable residual disease detection in AML patients undergoing SCT. Bone Marrow Transplant. 2015;50(5):642–51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Steinbach D, Bader P, Willasch A, Bartholomae S, Debatin KM, Zimmermann M, et al. Prospective validation of a new method of monitoring minimal residual disease in childhood acute myelogenous leukemia. Clin Cancer Res. 2015;21(6):1353–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Mulé MP, Mannis GN, Wood BL, Radich JP, Hwang J, Ramos NR, et al. Multigene measurable residual disease assessment improves acute myeloid leukemia relapse risk stratification in autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016;22(11):1974–82.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314(8):811–22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Uy GL, Duncavage EJ, Chang GS, Jacoby MA, Miller CA, Shao J, et al. Dynamic changes in the clonal structure of MDS and AML in response to epigenetic therapy. Leukemia. 2017;31(4):872–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell. 2014;25(3):379–92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Young AL, Wong TN, Hughes AE, Heath SE, Ley TJ, Link DC, et al. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia. 2015;29(7):1608–11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Griffith M, Miller CA, Griffith OL, Krysiak K, Skidmore ZL, Ramu A, et al. Optimizing cancer genome sequencing and analysis. Cell Syst. 2015;1(3):210–23.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484. One of several recent articles highlighting the frequent presence of AML-associated mutations in seemingly healthy adults. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A. 2000;97(13):7521–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A. 2014;111(7):2548–53.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pløen GG, Nederby L, Guldberg P, Hansen M, Ebbesen LH, Jensen UB, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Wong TN, Miller CA, Klco JM, Petti A, Demeter R, Helton NM, et al. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML. Blood. 2016;127(7):893–7.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mencia-Trinchant N, Hu Y, Alas MA, Ali F, Wouters BJ, Lee S, et al. Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J Mol Diagn. 2017;19(4):537–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Hirsch P, Tang R, Abermil N, Flandrin P, Moatti H, Favale F, et al. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(7):1227–37.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Parkin B, Londono-Joshi A, Kang Q, Tewari M, Rhim AD, Malek SN. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest. 2017;127(9):3484–95.CrossRefPubMedGoogle Scholar
  49. 49.
    Getta BM, Devlin SM, Levine RL, Arcila ME, Mohanty AS, Zehir A, et al. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol Blood Marrow Transplant. 2017;23(7):1064–71.CrossRefPubMedGoogle Scholar
  50. 50.
    Thol F, Klesse S, Kohler L, Gabdoulline R, Kloos A, Liebich A, et al. Acute myeloid leukemia derived from lympho-myeloid clonal hematopoiesis. Leukemia. 2017;31(6):1286–95.CrossRefPubMedGoogle Scholar
  51. 51.
    Gaidzik VI, Weber D, Paschka P, Kaumanns A, Krieger S, Corbacioglu A, et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia. 2017 Jun 23.  https://10.1038/leu.2017.200.
  52. 52.
    Gaballa S, Saliba R, Oran B, Brammer JE, Chen J, Rondon G, et al. Relapse risk and survival in patients with FLT3 mutated acute myeloid leukemia undergoing stem cell transplantation. Am J Hematol. 2017;92(4):331–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the Acute Leukemia French Association Group. J Clin Oncol. 2017;35(2):185–93.CrossRefPubMedGoogle Scholar
  54. 54.
    Ragon BK, Daver N, Garcia-Manero G, Ravandi F, Cortes J, Kadia T, et al. Minimal residual disease eradication with epigenetic therapy in core binding factor acute myeloid leukemia. Am J Hematol. 2017;92(9):845–50.CrossRefPubMedGoogle Scholar
  55. 55.
    Østergaard M, Nyvold CG, Jovanovic JV, Andersen MT, Kairisto V, Morgan YG, et al. Development of standardized approaches to reporting of minimal residual disease data using a reporting software package designed within the European LeukemiaNet. Leukemia. 2011;25(7):1168–73.CrossRefPubMedGoogle Scholar
  56. 56.
    Burnett AK, Milligan D, Prentice AG, Goldstone AH, McMullin MF, Hills RK, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114–24.CrossRefPubMedGoogle Scholar
  57. 57.
    Walter RB, Kantarjian HM, Huang X, Pierce SA, Sun Z, Gundacker HM, et al. Effect of complete remission and responses less than complete remission on survival in acute myeloid leukemia: a combined Eastern Cooperative Oncology Group, Southwest Oncology Group, and M. D. Anderson Cancer Center Study. J Clin Oncol. 2010;28(10):1766–71.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Thépot S, Itzykson R, Seegers V, Recher C, Raffoux E, Quesnel B, et al. Azacitidine in untreated acute myeloid leukemia: a report on 149 patients. Am J Hematol. 2014;89(4):410–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood. 1995;85(6):1416–34.PubMedGoogle Scholar
  61. 61.
    Campana D, Leung W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol. 2013;162(2):147–61.CrossRefPubMedGoogle Scholar
  62. 62.
    Buckley SA, Appelbaum FR, Walter RB. Prognostic and therapeutic implications of minimal residual disease at the time of transplantation in acute leukemia. Bone Marrow Transplant. 2013;48(5):630–41.CrossRefPubMedGoogle Scholar
  63. 63.
    Guolo F, Minetto P, Clavio M, Miglino M, Galaverna F, Raiola AM, et al. Combining flow cytometry and WT1 assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(9):e348–e51.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chen X, Othus M, Wood BL, Walter RB, Percival MM, Becker PS, et al. Flow cytometric demonstration of decrease in bone marrow leukemic blasts after ‘Day 14’ without further therapy in acute myeloid leukemia. Leuk Lymphoma. 2017;58(11):2717–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Tierens A, Bjørklund E, Siitonen S, Marquart HV, Wulff-Juergensen G, Pelliniemi TT, et al. Residual disease detected by flow cytometry is an independent predictor of survival in childhood acute myeloid leukaemia; results of the NOPHO-AML 2004 study. Br J Haematol. 2016;174(4):600–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA, et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120(8):1581–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97.CrossRefPubMedGoogle Scholar
  69. 69.
    Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK, et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol. 2013;31(32):4123–31.CrossRefPubMedGoogle Scholar
  70. 70.
    Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS, et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol. 2015;33(11):1258–64.CrossRefPubMedGoogle Scholar
  71. 71.
    Chen X, Xie H, Estey EH. Reply to D. Przepiorka et al. J Clin Oncol. 2015;33(31):3676–7.CrossRefPubMedGoogle Scholar
  72. 72.
    • Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102(5):865–73. Recent meta-analysis of studies reporting on prognostic value of pre-transplant MRD testing in AML. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Frairia C, Aydin S, Audisio E, Riera L, Aliberti S, Allione B, et al. Post-remissional and pre-transplant role of minimal residual disease detected by WT1 in acute myeloid leukemia: a retrospective cohort study. Leuk Res. 2017;61:10–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhou Y, Othus M, Araki D, Wood BL, Radich JP, Halpern AB, et al. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia. 2016;30(7):1456–64.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zheng C, Zhu X, Tang B, Zhang L, Geng L, Liu H, et al. The impact of pre-transplant minimal residual disease on outcome of intensified myeloablative cord blood transplant for acute myeloid leukemia in first or second complete remission. Leuk Lymphoma. 2016;57(6):1398–405.CrossRefPubMedGoogle Scholar
  76. 76.
    • Milano F, Gooley T, Wood B, Woolfrey A, Flowers ME, Doney K, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375(10):944–53. Large study reporting that negative impact of positive MRD test before allogeneic transplantation is less marked with cord blood transplantation, suggesting possibility of better graft-versus-leukemia effects for cord blood compared to HLA-matched transplants. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chang YJ, Wang Y, Liu YR, Xu LP, Zhang XH, Chen H, et al. Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis. J Hematol Oncol. 2017;10(1):134.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Maurillo L, Buccisano F, Del Principe MI, Del Poeta G, Spagnoli A, Panetta P, et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol. 2008;26(30):4944–51.CrossRefPubMedGoogle Scholar
  79. 79.
    Buccisano F, Maurillo L, Spagnoli A, Del Principe MI, Fraboni D, Panetta P, et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood. 2010;116(13):2295–303.CrossRefPubMedGoogle Scholar
  80. 80.
    Othus M, Wood BL, Stirewalt DL, Estey EH, Petersdorf SH, Appelbaum FR, et al. Effect of measurable (‘minimal’) residual disease (MRD) information on prediction of relapse and survival in adult acute myeloid leukemia. Leukemia. 2016;30(10):2080–3.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Brüggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia. 2010;24(3):521–35.CrossRefPubMedGoogle Scholar
  82. 82.
    Alvarnas JC, Brown PA, Aoun P, Ballen KK, Barta SK, Borate U, et al. Acute lymphoblastic leukemia, version 2.2015. J Natl Compr Cancer Netw. 2015;13(10):1240–79.CrossRefGoogle Scholar
  83. 83.
    Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.CrossRefPubMedGoogle Scholar
  85. 85.
    Percival ME, Lai C, Estey E, Hourigan CS. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood Rev. 2017;31(4):185–92.CrossRefPubMedGoogle Scholar
  86. 86.
    Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30(29):3625–32.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34(4):329–36.CrossRefPubMedGoogle Scholar
  88. 88.
    Hourigan CS, Goswami M, Battiwalla M, Barrett AJ, Sheela S, Karp JE, et al. When the minimal becomes measurable. J Clin Oncol. 2016;34(21):2557–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Francesco Buccisano
    • 1
    Email author
  • Christopher S. Hourigan
    • 2
  • Roland B. Walter
    • 3
    • 4
    • 5
  1. 1.Department of Biomedicine and Prevention, HematologyUniversity Tor VergataRomeItaly
  2. 2.Myeloid Malignancies Section, Hematology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  3. 3.Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleUSA
  4. 4.Department of Medicine, Division of HematologyUniversity of WashingtonSeattleUSA
  5. 5.Department of EpidemiologyUniversity of WashingtonSeattleUSA

Personalised recommendations