Skip to main content

Advertisement

Log in

Therapy for Chronic Myelomonocytic Leukemia in a New Era

  • Myelodysplastic Syndromes (M Savona, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic myelomonocytic leukemia (CMML) is a myeloid malignancy which shares clinical and morphologic features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) and is classified by the WHO as an MDS/MPN. The defining feature of CMML is clonal hematopoiesis that results in peripheral monocytosis. The benefit of early treatment is currently unclear, and treatment may be held until the disease exhibits accelerated blast counts or the patient becomes symptomatic. Optimal treatments for CMML are not well defined. Conventional treatments include hydroxyurea, cytarabine, and hypomethylating agents. However, all treatment options are limited and, with the exception of allogeneic stem cell transplantation, are considered palliative. As we continue to learn about the genomics of CMML and about arising therapeutic targets and those under active clinical investigation, the future therapy of CMML will likely improve considerably. Here, we review the data available for conventional therapies and highlight emerging therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. doi:10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  2. Savona MR, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–65. doi:10.1182/blood-2014-10-607341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Germing U, Gattermann N, Minning H, Heyll A, Aul C. Problems in the classification of CMML—dysplastic versus proliferative type. Leuk Res. 1998;22:871–8.

    Article  CAS  PubMed  Google Scholar 

  4. Nosslinger T, et al. Dysplastic versus proliferative CMML—a retrospective analysis of 91 patients from a single institution. Leuk Res. 2001;25:741–7.

    Article  CAS  PubMed  Google Scholar 

  5. •• Patnaik MM, et al. “Proliferative” versus “dysplastic” chronic myelomonocytic leukemia: molecular and prognostic correlates. Blood. 2016;128:1987. Although simply defined by total leukocyte count, Patnaik et al. demonstrated that specific recurrent molecular mutations segregate MD-CMML and MP-CMML. Whereas SF3B1 mutations were more common in MD-CMML, mutations in ASXL1, JAK2, CBL, and genes of the RAS family are more prevalent in MP-CMML, which hints at differential underlying disease biologies. These identified differences will likely impact treatment in the future, especially as targeted therapies are sought. This work led to the WHO recommendation for distinction between MD-CMML and MP-CMML.

  6. Tefferi A, Hoagland HC, Therneau TM, Pierre RV. Chronic myelomonocytic leukemia: natural history and prognostic determinants. Mayo Clin Proc. 1989;64:1246–54.

    Article  CAS  PubMed  Google Scholar 

  7. Onida F, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99:840–9.

    Article  CAS  PubMed  Google Scholar 

  8. Germing U, et al. Chronic myelomonocytic leukemia in the light of the WHO proposals. Haematologica. 2007;92:974–7.

    Article  PubMed  Google Scholar 

  9. Schuler E, et al. Refined medullary blast and white blood cell count based classification of chronic myelomonocytic leukemias. Leuk Res. 2014;38:1413–9. doi:10.1016/j.leukres.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  10. • Padron E, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068–77. doi:10.1182/blood-2012-10-460170. While earlier studies had demonstrated the importance of the GCSF pathway in the pathogenesis of CMML, the results of the studies by Padron et al. showed that downstream signaling events activated by aberrant GCSF signaling are inhibited when cells are treated either with a GCSF-neutralizing antibody or with JAK inhibition. This study provides a solid rationale for such novel agents to be further explored in a clinical setting. As a result, both an anti-GCSF antibody (lenzilumab) and the JAK1/2 inhibitor ruxolitinib are being actively investigated in CMML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. • Such E, et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica. 2011;96:375–83. doi:10.3324/haematol.2010.030957. Such et al. investigated the role cytogenetics play in risk stratification in CMML and defined three groups of patients based on cytogenetic risk. Perhaps not surprisingly, complex cytogenetics were associated with poor overall survival and increased risk of transformation to AML. This is, however, the first study to demonstrate that cytogenetic aberrations are independent risk factors and correlate with more advanced disease in CMML (higher medullary blast count). Furthermore, the adverse risk conferred by cytogenetic abnormalities, specifically trisomy 8, isolated del(5q) or del(20q), appears greater in CMML than in MDS.

    Article  PubMed  Google Scholar 

  12. Laborde RR, et al. SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia. 2013;27:2100–2. doi:10.1038/leu.2013.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itzykson R, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36. doi:10.1200/JCO.2012.47.3314.

    Article  CAS  PubMed  Google Scholar 

  14. Elena C, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17. doi:10.1182/blood-2016-05-714030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Patnaik MM, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12. doi:10.1038/leu.2014.125.

    Article  CAS  PubMed  Google Scholar 

  16. Bou Samra E, et al. New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients. Br J Haematol. 2012;157:347–56. doi:10.1111/j.1365-2141.2012.09069.x.

    Article  PubMed  Google Scholar 

  17. Greenberg P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88.

    CAS  PubMed  Google Scholar 

  18. Padron E, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333. doi:10.1038/bcj.2015.53.

  19. Mufti GJ, Stevens JR, Oscier DG, Hamblin TJ, Machin D. Myelodysplastic syndromes: a scoring system with prognostic significance. Br J Haematol. 1985;59:425–33.

  20. Worsley, A. et al. Prognostic features of chronic myelomonocytic leukaemia: a modified Bournemouth score gives the best prediction of survival. Br J Haematol 68, 17–21 (1988).

  21. Aul C, et al. Primary myelodysplastic syndromes: analysis of prognostic factors in 235 patients and proposals for an improved scoring system. Leukemia. 1992;6:52–9.

  22. Morel P, et al. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia. 1993;7:1315–23.

  23. Sanz GF, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood. 1989;74:395–408.

  24. Beran, M. et al. Prognostic factors and risk assessment in chronic myelomonocytic leukemia: validation study of the M.D. Anderson Prognostic Scoring System. Leuk Lymphoma 48, 1150-1160, doi:10.1080/10428190701216386 (2007).

  25. Kantarjian H, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113:1351–61. doi:10.1002/cncr.23697.

  26. Such E, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15. doi:10.1182/blood-2012-08-452938.

    Article  CAS  PubMed  Google Scholar 

  27. Patnaik MM, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27:1504–10. doi:10.1038/leu.2013.88.

    Article  CAS  PubMed  Google Scholar 

  28. Germing U, Strupp C, Aivado M, Gattermann N. New prognostic parameters for chronic myelomonocytic leukemia. Blood. 2002;100:731–732; author reply 732-733.

    Article  CAS  PubMed  Google Scholar 

  29. Germing U, Kundgen A, Gattermann N. Risk assessment in chronic myelomonocytic leukemia (CMML). Leuk Lymphoma. 2004;45:1311–8. doi:10.1080/1042819042000207271.

    Article  CAS  PubMed  Google Scholar 

  30. Ades L, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37:609–13. doi:10.1016/j.leukres.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  31. Costa R, et al. Activity of azacitidine in chronic myelomonocytic leukemia. Cancer. 2011;117:2690–6. doi:10.1002/cncr.25759.

    Article  CAS  PubMed  Google Scholar 

  32. Wijermans PW, et al. Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res. 2008;32:587–91. doi:10.1016/j.leukres.2007.08.004.

    Article  CAS  PubMed  Google Scholar 

  33. Fianchi L, et al. High rate of remissions in chronic myelomonocytic leukemia treated with 5-azacytidine: results of an Italian retrospective study. Leuk Lymphoma. 2013;54:658–61. doi:10.3109/10428194.2012.719617.

    Article  CAS  PubMed  Google Scholar 

  34. Thorpe M, Montalvao A, Pierdomenico F, Moita F, Almeida A. Treatment of chronic myelomonocytic leukemia with 5-Azacitidine: a case series and literature review. Leuk Res. 2012;36:1071–3. doi:10.1016/j.leukres.2012.04.024.

    Article  CAS  PubMed  Google Scholar 

  35. Wong E, et al. Treatment of chronic myelomonocytic leukemia with azacitidine. Leuk Lymphoma. 2013;54:878–80. doi:10.3109/10428194.2012.730615.

    Article  CAS  PubMed  Google Scholar 

  36. Silverman LR, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20:2429–40. doi:10.1200/JCO.2002.04.117.

    Article  CAS  PubMed  Google Scholar 

  37. Drummond MW, et al. A multi-centre phase 2 study of azacitidine in chronic myelomonocytic leukaemia. Leukemia. 2014;28:1570–2. doi:10.1038/leu.2014.85.

    Article  CAS  PubMed  Google Scholar 

  38. Padron E, et al. Hypomethylating agents improve overall survival in higher risk chronic myelomonocytic leukemia (CMML). Blood. 2012;120:3838.

    Google Scholar 

  39. Kantarjian H, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106:1794–803. doi:10.1002/cncr.21792.

    Article  CAS  PubMed  Google Scholar 

  40. Kantarjian H, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109:52–7. doi:10.1182/blood-2006-05-021162.

    Article  CAS  PubMed  Google Scholar 

  41. Aribi A, et al. Activity of decitabine, a hypomethylating agent, in chronic myelomonocytic leukemia. Cancer. 2007;109:713–7. doi:10.1002/cncr.22457.

    Article  CAS  PubMed  Google Scholar 

  42. Braun T, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118:3824–31. doi:10.1182/blood-2011-05-352039.

    Article  CAS  PubMed  Google Scholar 

  43. Meldi K, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125:1857–72. doi:10.1172/JCI78752.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wattel E, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Francais des Myelodysplasies and European CMML Group. Blood. 1996;88:2480–7.

    CAS  PubMed  Google Scholar 

  45. Kerbauy DM, et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia. Biol Blood Marrow Transplant. 2005;11:713–20. doi:10.1016/j.bbmt.2005.05.008.

    Article  PubMed  Google Scholar 

  46. Zang DY, et al. Treatment of chronic myelomonocytic leukaemia by allogeneic marrow transplantation. Br J Haematol. 2000;110:217–22.

    Article  CAS  PubMed  Google Scholar 

  47. Krishnamurthy P, et al. Allogeneic haematopoietic SCT for chronic myelomonocytic leukaemia: a single-centre experience. Bone Marrow Transplant. 2010;45:1502–7. doi:10.1038/bmt.2009.375.

    Article  CAS  PubMed  Google Scholar 

  48. Kroger N, et al. Allogeneic stem cell transplantation of adult chronic myelomonocytic leukaemia. A report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol. 2002;118:67–73.

    Article  PubMed  Google Scholar 

  49. Park S, et al. Allogeneic stem cell transplantation for chronic myelomonocytic leukemia: a report from the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Eur J Haematol. 2013;90:355–64. doi:10.1111/ejh.12073.

    Article  PubMed  Google Scholar 

  50. Everson MP, Brown CB, Lilly MB. Interleukin-6 and granulocyte-macrophage colony-stimulating factor are candidate growth factors for chronic myelomonocytic leukemia cells. Blood. 1989;74:1472–6.

    CAS  PubMed  Google Scholar 

  51. Ramshaw HS, Bardy PG, Lee MA, Lopez AF. Chronic myelomonocytic leukemia requires granulocyte-macrophage colony-stimulating factor for growth in vitro and in vivo. Exp Hematol. 2002;30:1124–31.

    Article  CAS  PubMed  Google Scholar 

  52. Padron E, et al. A multi-institution phase I trial of ruxolitinib in patients with chronic myelomonocytic leukemia (CMML). Clin Cancer Res. 2016;22:3746–54. doi:10.1158/1078-0432.CCR-15-2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Daver NG, et al. Ruxolitinib (RUX) in combination with azacytidine (AZA) in patients (pts) with myelodysplastic/myeloproliferative neoplasms (MDS/MPNs). Blood. 2016;128:4246.

    Article  Google Scholar 

  54. Geissler K, et al. In vitro and in vivo effects of JAK2 inhibition in chronic myelomonocytic leukemia. Eur J Haematol. 2016;97:562–7. doi:10.1111/ejh.12773.

    Article  CAS  PubMed  Google Scholar 

  55. Papaemmanuil E, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–3627; quiz 3699. doi:10.1182/blood-2013-08-518886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel B, et al. Genomic determinants of chronic myelomonocytic leukemia. Leukemia. 2017; doi:10.1038/leu.2017.164.

  57. Onida F, et al. A new clinically-based subclassification proposal in CMML with significant prognostic implications to overcome the MDS/MPN categorizing dilemma. Blood. 2016;128:4320.

    Google Scholar 

  58. Beaupre DM, Kurzrock R. RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol. 1999;17:1071–9. doi:10.1200/JCO.1999.17.3.1071.

    Article  CAS  PubMed  Google Scholar 

  59. Fenaux P, et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood. 2007;109:4158–63.

    Article  CAS  PubMed  Google Scholar 

  60. Saez B, Walter MJ, Graubert TA. Splicing factor gene mutations in hematologic malignancies. Blood. 2017;129:1260–9. doi:10.1182/blood-2016-10-692400.

    Article  CAS  PubMed  Google Scholar 

  61. Buonamici S, et al. H3B-8800, an orally bioavailable modulator of the SF3b complex, shows efficacy in spliceosome-mutant myeloid malignancies. Blood. 2016;128:966.

    Google Scholar 

  62. • Komrokji RS, et al. An open-label, phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (Int-1)-risk myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion. Blood. 2014;124:3251. Patients with CMML often present with profound anemia, requiring transfusion. Komrokji et al. demonstrated that the activin type IIa receptor ligand trap sotatercept stimulates erythropoiesis, especially in MDS and CMML patients who harbor SF3B1 mutation, which has been associated with MD-CMML. Sotatercept treatment led to hematologic improvement-erythroid responses and paved the way for similar erythroid response-targeting agents, such as luspatercept, to be tested in MDS and MDS/MPN.

  63. Platzbecker U, et al. Biomarkers of ineffective erythropoiesis predict response to luspatercept in patients with low or intermediate-1 risk myelodysplastic syndromes (MDS): final results from the phase 2 PACE-MDS Study. Blood. 2015;126:2862.

    Google Scholar 

  64. Buckstein R, et al. Lenalidomide and metronomic melphalan for CMML and higher risk MDS: a phase 2 clinical study with biomarkers of angiogenesis. Leuk Res. 2014;38:756–63. doi:10.1016/j.leukres.2014.03.022.

    Article  CAS  PubMed  Google Scholar 

  65. Sekeres MA et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol. 2017; JCO2015662510. doi:10.1200/JCO.2015.66.2510.

  66. Burgstaller S, et al. A phase I study of Lenalidomide in patients with chronic myelomonocytic leukaemia (CMML) – AGMT_CMML 1. Blood. 2014;124:3268.

    Google Scholar 

  67. Malcovati L, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124:1513–21. doi:10.1182/blood-2014-03-560227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DiNardo C, et al. Molecular profiling and relationship with clinical response in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class potent inhibitor of mutant IDH1, in addition to data from the completed dose escalation portion of the phase 1 study. Blood. 2015;126:1306.

    Article  Google Scholar 

  69. Stein EM, et al. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood. 2015;126:323.

    Google Scholar 

  70. De Preter G, et al. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget. 2016;7:2910–20. doi:10.18632/oncotarget.6272.

    Article  PubMed  Google Scholar 

  71. Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta. 2014;1846:617–29. doi:10.1016/j.bbcan.2014.08.005.

    CAS  PubMed  Google Scholar 

  72. Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989–94. doi:10.1038/sj.bjc.6604554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chu QS, et al. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Investig New Drugs. 2015;33:603–10. doi:10.1007/s10637-015-0221-y.

    Article  CAS  Google Scholar 

  74. Dunbar EM, et al. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Investig New Drugs. 2014;32:452–64. doi:10.1007/s10637-013-0047-4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Savona.

Ethics declarations

Conflict of Interest

Tamara K. Moyo declares no potential conflicts of interest.

Michael R. Savona reports grants/research support from Astex, Incyte Corporation, Sunesis, Takeda, and TG Therapeutics; service as an advisor/board member for Astex, Amgen, Celgene (DSMB), Gilead (DSMB), Incyte, and TG Therapeutics (DSMB); and consulting fees and stock holdings of Karyopharm.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myelodysplastic Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyo, T.K., Savona, M.R. Therapy for Chronic Myelomonocytic Leukemia in a New Era. Curr Hematol Malig Rep 12, 468–477 (2017). https://doi.org/10.1007/s11899-017-0408-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0408-8

Keywords

Navigation