Skip to main content

Advertisement

Log in

Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms

  • Myelodysplastic Syndromes (D Steensma, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Genome sequencing of primary cells from patients with myelodysplastic syndromes (MDS) led to the identification of recurrent heterozygous mutations in gene encoding components of the spliceosome, the cellular machinery which processes pre-messenger RNA (mRNA) to mature mRNA during gene transcription. Splicing mutations are mutually exclusive with one another and collectively represent the most common mutation class in MDS, occurring in approximately 60 % of patients overall and more than 80 % of those with ring sideroblasts. Evidence from animal models suggests that homozygous splicing mutations are lethal, and that in heterozygously mutated models, any further disruption of splicing triggers apoptosis and cell death. MDS cells with spliceosome mutations are thus uniquely vulnerable to therapies targeting splicing, which may be tolerated by healthy cells. The spliceosome is emerging as a novel therapeutic target in MDS and related myeloid neoplasms, with the first clinical trial of a splicing modulator opening in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Cogle CR, Iannacone MR, Yu D, Cole AL, Imanirad I, Yan L, et al. High rate of uncaptured myelodysplastic syndrome cases and an improved method of case ascertainment. Leuk Res. 2014;38(1):71–5.

    Article  PubMed  Google Scholar 

  2. Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.

    Article  PubMed  Google Scholar 

  3. Bejar R. Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica. 2014;99(6):956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steensma DP. Myelodysplastic syndromes: diagnosis and treatment. Mayo Clin Proc. 2015;90(7):969–83.

    Article  PubMed  Google Scholar 

  6. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  7. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(December 25):2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Genovese G, Kähler AK, Rose SA, Handsaker RE, Chambert K, Mick E, et al. Clonal hematopoiesis and cancer risk in blood derived DNA sequence. N Engl J Med. 2014;371(December 25):2477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(2159-8290 (Electronic)):1228–37.

    Article  CAS  PubMed  Google Scholar 

  12. Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3(7):a003707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    Article  CAS  PubMed  Google Scholar 

  14. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2016;44(1362-4962 (Electronic)):838–51.

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Kostadima M, Martens JHA, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345(6204):1251033.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He C, Zhou F, Zuo Z, Cheng H, Zhou R. A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS ONE. 2009;4(3):e4732.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kar SA, Jankowska A, Makishima H, Visconte V, Jerez A, Sugimoto Y, et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica. 2013;98(1):107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. Mutational analyses of 111 genes revealed 11 molecularly distinct AML subgroups, associated with different clinical outcomes and likely different pathogenetic mechanisms. Patients with chromatin-spliceosome mutations were in the same molecular subgroup as patients with sAML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(1528-0020 (Electronic)):1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2012;44(1):53–7.

    Article  CAS  Google Scholar 

  24. Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(1476-4687 (Electronic)):64–9.

    Article  CAS  PubMed  Google Scholar 

  26. Hicks MJ, Mueller WF, Shepard PJ, Hertel KJ. Competing upstream 5’ splice sites enhance the rate of proximal splicing. 2010.

    Google Scholar 

  27. Jung H, Lee D, Lee J, Park D, Kim YJ, Park W-Y, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47(11):1242–8. RNA sequencing and exome data from diverse cancers identified intron retention as a common mechanism of tumor suppressor gene inactivation.

    Article  CAS  PubMed  Google Scholar 

  28. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87.

    Article  CAS  PubMed  Google Scholar 

  30. Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun. 2016;7:10615. This study identified that mutations in the spliceosome gene result in deregulated splicing by favoring the use of an alternative 3′ splice site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, et al. Transcriptome sequencing reveals potential mechanism of cryptic 3′ splice site selection in SF3B1-mutated cancers. PLoS Comput Biol. 2015;11(3):e1004105. doi:10.1371/journal.pcbi.1004105.

  32. Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia. 2016. doi:10.1038/leu.2016.149. RNA sequencing data from patients with SF3B1 mutant MDS confirms cryptic 3′ splice site usage as a pathogenetic mechanism. The resultant nonsense mediated decay of the iron transporter ABCB7 may account for the mitochondrial iron overload noted in MDS patients with ring sideroblasts.

    PubMed  PubMed Central  Google Scholar 

  33. Zhang S-J, Rampal R, Manshouri T, Patel J, Mensah N, Kayserian A, et al. Genetic analysis of patients with leukemic transformation of myeloproliferative neoplasms shows recurrent SRSF2 mutations that are associated with adverse outcome. Blood. 2012;119(19):4480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaal TD, Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999;19(1):261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 2012;119(15):3578–84.

    Article  CAS  PubMed  Google Scholar 

  36. Park Sung M, Ou J, Chamberlain L, Simone Tessa M, Yang H, Virbasius C-M, et al. U2AF35(S34F) promotes transformation by directing aberrant pre-mRNA formation. Mol Cell. 2016;62(4):479–90.

    Article  PubMed  Google Scholar 

  37. Kim E, Ilagan Janine O, Liang Y, Daubner Gerrit M, Lee Stanley CW, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27(5):617–30. In a mouse model of the most common SRSF2 mutation, induction of SRSF2(P95H) led to mis-splicing by altering SRSF2’s selection of exonic splicing enhancer motifs, resulting in leukopenia, anemia and dysplasia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mrna splicing in vivo. Cancer Cell. 2015;27(5):631–43. In this doxycycline-inducible mouse model of the most common U2AF1 mutation, U2AF1(S34F) altered splicing of RNA processing and known recurrently mutated MDS/AML genes. Mice developed hematopoietic progenitor cell expansion and leukopenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colla S, Ong DS, Ogoti Y, Marchesini M, Mistry NA, Clise-Dwyer K, et al. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell. 2015;27(5):644–57. In a mouse model of telomere dysfunction, mice demonstrated reduced expression of genes required for 3′ mRNA splice site recognition and aberrant splicing. Mice developed leukopenia, dysplasia and 5 % progressed to AML.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93.

    Article  CAS  PubMed  Google Scholar 

  41. Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumour drugs. Nat Rev Drug Discov. 2012;11(11):847–59.

    Article  CAS  PubMed  Google Scholar 

  42. Pawellek A, McElroy S, Samatov T, Mitchell L, Woodland A, Ryder U, et al. Identification of small molecule inhibitors of pre-mRNA splicing. J Biol Chem. 2014;289(50):34683–98.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K, et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol. 2007;3:576–83.

    Article  CAS  PubMed  Google Scholar 

  44. Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M, et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol. 2007;3(1552-4450 (Print)):570–5.

    Article  CAS  PubMed  Google Scholar 

  45. Corrionero A, Minana B, Valcarcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011;25(1549-5477 (Electronic)):445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yokoi A, Kotake Y, Takahashi K, Kadowaki T, Matsumoto Y, Minoshima Y, et al. Biological validation that SF3b is a target of the antitumor macrolide pladienolide. FEBS J. 2011;278(24):4870–80.

    Article  CAS  PubMed  Google Scholar 

  47. Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol. 2011;6(6):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizui Y, Sakai T, Iwata M, Uenaka T, Okamoto K, Shimizu H, et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J Antibiot (Tokyo). 2004;57(0021-8820 (Print)):188–96.

    Article  CAS  Google Scholar 

  49. Albert BJ, McPherson P, O’Brien K, Czaicki NL, Destefino V, Osman S, et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther. 2009;8(1538-8514 (Electronic)):2308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, et al. Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A. 2005;102(24):8764–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stamm S. Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem. 2008;283(3):1223–7.

    Article  CAS  PubMed  Google Scholar 

  52. Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen G-J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30(3):293–9.

    Article  PubMed  Google Scholar 

  53. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Frei 3rd E. Gene deletion: a new target for cancer chemotherapy. Lancet. 1993;342(8872):662–4.

    Article  PubMed  Google Scholar 

  55. Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, et al. Cancer vulnerabilities unveiled by genomic loss. Cell. 2012;150(4):842–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343(6168):301–5.

    Article  PubMed  Google Scholar 

  57. Folco EG, Coil KE, Reed R. The anti-tumor drug E7107 reveals an essential role for SF3b in remodeling U2 snRNP to expose the branch point-binding region. Genes Dev. 2011;25(5):440–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–8. In mice with SRSF2-mutant leukemias, the splicing inibitor E7107 prolonged survival and reduced leukemic burden. E7107 resulted in greater splicing inhibition in SRSF2-mutated than wild-type leukemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anonymous. H3 Bioscience Pipeline. https://www.h3biomedicine.com/science/ Accessibility verified 27 June 2016. 2016

  60. Tripathi M, Lunn CL, Okeyo-Owuor T, Walter MJ, Webb TR, Graubert T. Sudemycin selectively inhibits growth of primary murine hematopoietic cells expressing mutant U2AF1. Blood. 2015;120(21):554.

    Google Scholar 

  61. Xargay-Torrent S, López-Guerra M, Rosich L, Montraveta A, Roldán J, Rodríguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6(26):22734.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19(22):6296–304. The first-in-man trial of E7107, a pladienolide derivative targeting SF3B1, in patients with advanced solid tumors demonstrated in vivo evidence of splicing inhibition. The trial was halted due to the development of bilateral optic neuritis in one patient.

    Article  CAS  PubMed  Google Scholar 

  63. Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Investig New Drugs. 2014;32(3):436–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Steensma.

Ethics declarations

Conflict of Interest

Charlotte K. Brierley declares no potential conflicts of interest. David P. Steensma is a section editor for Current Hematologic Malignancy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myelodysplastic Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brierley, C.K., Steensma, D.P. Targeting Splicing in the Treatment of Myelodysplastic Syndromes and Other Myeloid Neoplasms. Curr Hematol Malig Rep 11, 408–415 (2016). https://doi.org/10.1007/s11899-016-0344-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0344-z

Keywords

Navigation