Skip to main content

Advertisement

Log in

Targets, Toxins, and T Cells—a Review of New Monoclonal Antibodies in the Treatment of Peripheral T Cell Lymphomas

  • T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The peripheral T cell lymphomas (PTCLs) are a heterogeneous group of neoplasms for which standardized treatment approaches remain elusive. A number of new therapeutic agents have become available, of which monoclonal antibodies (MAbs) represent a powerful tool for targeted treatment of PTCLs. Therapeutic MAbs vary in their structure, targets, and mechanisms of action. Common mechanisms of action include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, direct apoptosis, blocking of receptors or signaling pathways, delivery of cytotoxic agents to tumor cells, and binding to and blocking biologically active molecules. This review will focus on recent published evidence for the various MAbs used in the treatment of PTCLs. The results overall have been very promising, and the future will see more trials with these antibodies alone and in various therapy combinations, as well as newer ones with novel modifications, conjugates, and targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gooptu M, Rhoades R, Pro B. Current management of peripheral T-cell lymphomas. Cancer Treat Res. 2015;165:289–303.

    Article  CAS  PubMed  Google Scholar 

  2. Redman JM et al. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol. 2015;67(2 Pt A):28–45. 

  3. Karlin L, Coiffier B. The changing landscape of peripheral T-cell lymphoma in the era of novel therapies. Semin Hematol. 2014;51(1):25–34.

    Article  PubMed  Google Scholar 

  4. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, vol. 2. 4th ed. Lyon: IARC press; 2008. p. 439.

    Google Scholar 

  5. Skarbnik AP, Burki M, Pro B. Peripheral T-cell lymphomas: a review of current approaches and hopes for the future. Front Oncol. 2013;3:138.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ansell SM. Brentuximab vedotin. Blood. 2014;124(22):3197–200.

    Article  CAS  PubMed  Google Scholar 

  7. Younes A et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  8. Pro B et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–6. This reference is notable for the impressive efficacy with tolerable toxicity for a relatively large sample size of 58 ALCL patients with relapsed refractory disease. Objective response was achieved in 50 (86%), with 33 (57%) complete response (CRs) and 17 (29%) partial responses (PRs).

    Article  CAS  PubMed  Google Scholar 

  9. Gopal AK et al. Brentuximab vedotin in patients aged 60 years or older with relapsed or refractory CD30-positive lymphomas: a retrospective evaluation of safety and efficacy. Leuk Lymphoma. 2014;55(10):2328–34.

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz SM et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014;123(20):3095–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Brown MP, Staudacher AH. Could bystander killing contribute significantly to the antitumor activity of brentuximab vedotin given with standard first-line chemotherapy for Hodgkin lymphoma? Immunotherapy. 2014;6(4):371–5.

    Article  CAS  PubMed  Google Scholar 

  12. Fanale MA et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bartlett N, et al. Retreatment with brentuximab vedotin in CD30-positive hematologic malignancies: a phase II study. J Clin Oncol. 2012;30(suppl; abstr 8027).

  14. Criscuolo M et al. Rapid response of nodular CD30-positive mycosis fungoides to brentuximab vedotin. Br J Haematol. 2015;168(5):617.

    Article  CAS  PubMed  Google Scholar 

  15. Corey K et al. A case of refractory Sezary syndrome with large-cell transformation responsive to brentuximab vedotin. JAMA Dermatol. 2014;150(2):210–2.

    Article  PubMed  Google Scholar 

  16. Ferenczi K et al. Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol. 2002;119(6):1405–10.

    Article  CAS  PubMed  Google Scholar 

  17. Ishida T et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10(16):5494–500.

    Article  CAS  PubMed  Google Scholar 

  18. Ishida T et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9(10 Pt 1):3625–34.

    CAS  PubMed  Google Scholar 

  19. Vela M et al. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol. 2015;6:12.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ishii T et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res. 2010;16(5):1520–31.

    Article  CAS  PubMed  Google Scholar 

  21. Shinkawa T et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73.

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto K et al. Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28(9):1591–8.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki R. Dosing of a phase I study of KW-0761, an anti-CCR4 antibody, for adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28(23):e404-5. author reply e406.

    Article  Google Scholar 

  24. Ishida T et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42. This study led to approval of Mogamulizumab in Japan for ATL. Of 26 patients with relapsed ATL, ORR was an impressive 50% with 8 patients achieving CR.

    Article  CAS  PubMed  Google Scholar 

  25. Ogura M et al. Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J Clin Oncol. 2014;32(11):1157–63.

    Article  CAS  PubMed  Google Scholar 

  26. Duvic M et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9. This represents the largest trial to date of mogamulizumab in CTCL. ORR in this combined population of previously treated MF and sezary syndrome patients was 37%, and also showed a better response in sezary syndrome (47%) than MF (29%).

  27. Ishida T et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol. 2015;169(5):672–82. This is the first published study to show that mogamulizumab could be used effectively in combination with chemotherapy as initial treatment for ATL. RR was better in the mogamulizumab arm (52% CR and 86% ORR, N= 29) compared to chemotherapy alone (33% CR and 75% ORR, N=24), at the cost of increased but manageable toxicity.

  28. Kanazawa T et al. Anti-CCR4 monoclonal antibody mogamulizumab for the treatment of EBV-associated T- and NK-cell lymphoproliferative diseases. Clin Cancer Res. 2014;20(19):5075–84.

    Article  CAS  PubMed  Google Scholar 

  29. Ni X et al. Reduction of regulatory T cells by mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and sezary syndrome. Clin Cancer Res. 2015;21(2):274–85.

    Article  CAS  PubMed  Google Scholar 

  30. Taguchi M et al. Molecular analysis of loss of CCR4 expression during mogamulizumab monotherapy in an adult T cell leukemia/lymphoma patient. Ann Hematol. 2015;94(4):693–5.

    Article  PubMed  Google Scholar 

  31. Ohyama Y et al. Induction of molecular remission by using anti-CC-chemokine receptor 4 (anti-CCR4) antibodies for adult T cell leukemia: a risk of opportunistic infection after treatment with anti-CCR4 antibodies. Ann Hematol. 2014;93(1):169–71.

    Article  PubMed  Google Scholar 

  32. Kato K et al. Diffuse panbronchiolitis after humanized anti-CCR4 monoclonal antibody therapy for relapsed adult T-cell leukemia/lymphoma. Int J Hematol. 2013;97(3):430–2.

    Article  CAS  PubMed  Google Scholar 

  33. Ifuku H, et al. Fatal reactivation of hepatitis B virus infection in a patient with adult T-cell leukemia-lymphoma receiving the anti-CC chemokine receptor 4 antibody mogamulizumab. Hepatol Res. doi:10.1111/hepr.12513.

  34. Waldmann H, Hale G. CAMPATH: from concept to clinic. Philos Trans R Soc Lond B Biol Sci. 2005;360(1461):1707–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zinzani PL et al. Overview of alemtuzumab therapy for the treatment of T-cell lymphomas. Leuk Lymphoma. 2012;53(5):789–95.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang L et al. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy. Br J Haematol. 2009;145(2):173–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Broccoli A et al. Complete response of relapsed systemic and cutaneous anaplastic large cell lymphoma using brentuximab vedotin: 2 case reports. Clin Lymphoma Myeloma Leuk. 2013;13(4):493–5.

    Article  PubMed  Google Scholar 

  38. Dearden CE et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98(6):1721–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dearden C. How I treat prolymphocytic leukemia. Blood. 2012;120(3):538–51.

    Article  CAS  PubMed  Google Scholar 

  40. Dearden CE et al. Alemtuzumab therapy in T-cell prolymphocytic leukemia: comparing efficacy in a series treated intravenously and a study piloting the subcutaneous route. Blood. 2011;118(22):5799–802. Alemtuzumab can be administered by intravenous or subcutaneous route. This study demonstrates a huge difference in efficacy in T-PLL depending on route of administration with CR rates up to 90% with IV route as opposed to response rates of 33% when administered subcutaneously.

    Article  CAS  PubMed  Google Scholar 

  41. Enblad G et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood. 2004;103(8):2920–4.

    Article  CAS  PubMed  Google Scholar 

  42. Gallamini A et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110(7):2316–23.

    Article  CAS  PubMed  Google Scholar 

  43. Kim JG et al. Alemtuzumab plus CHOP as front-line chemotherapy for patients with peripheral T-cell lymphomas: a phase II study. Cancer Chemother Pharmacol. 2007;60(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  44. Binder C et al. CHO(E)P-14 followed by alemtuzumab consolidation in untreated peripheral T cell lymphomas: final analysis of a prospective phase II trial. Ann Hematol. 2013;92(11):1521–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Clark RA et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Transl Med. 2012;4(117):117ra7. The use of alemtuzumab is limited by significant risk of serious infections. This study is of note because it suggests that low dose alemtuzumab can be effective in leukemic CTCL (but not MF) with less toxicity. This is in contrast to treatment of PLL which requires IV administration for efficacy.

    PubMed Central  PubMed  Google Scholar 

  46. de Masson A et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol. 2014;170(3):720–4.

    Article  PubMed  Google Scholar 

  47. Ferrara N et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400.

    Article  CAS  PubMed  Google Scholar 

  48. Ganjoo K et al. Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: an Eastern Cooperative Oncology Group study (E2404). Leuk Lymphoma. 2014;55(4):768–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Pfender N, Martin R. Daclizumab (anti-CD25) in multiple sclerosis. Exp Neurol. 2014;262 Pt A:44–51.

    Article  PubMed  Google Scholar 

  50. Willenbacher W et al. Treatment of steroid refractory acute and chronic graft-versus-host disease with daclizumab. Br J Haematol. 2001;112(3):820–3.

    Article  CAS  PubMed  Google Scholar 

  51. Berkowitz JL et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol. 2014;155(2):176–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3.

    Article  CAS  PubMed  Google Scholar 

  53. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61.

    Article  CAS  PubMed  Google Scholar 

  54. Hawkes EA, Grigg A, Chong G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol. 2015;16(5):e234–45.

    Article  CAS  PubMed  Google Scholar 

  55. Samimi S et al. Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression. Arch Dermatol. 2010;146(12):1382–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kantekure K et al. Expression patterns of the immunosuppressive proteins PD-1/CD279 and PD-L1/CD274 at different stages of cutaneous T-cell lymphoma/mycosis fungoides. Am J Dermatopathol. 2012;34(1):126–8.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lesokhin AM et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. 2014;124(21):291. Although still interim results and small numbers, this is the first data of immune check point inhibition (nivolumab, anti-PD1) in T-cell lymphoma and suggests modest efficacy and safety.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hebb.

Additional information

This article is part of the Topical Collection on T Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebb, J., Kohrt, H. Targets, Toxins, and T Cells—a Review of New Monoclonal Antibodies in the Treatment of Peripheral T Cell Lymphomas. Curr Hematol Malig Rep 10, 438–447 (2015). https://doi.org/10.1007/s11899-015-0290-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0290-1

Keywords

Navigation