Skip to main content

Advertisement

Log in

Mature T-cell leukemias: Molecular and Clinical Aspects

  • T-Cell and Other Lymphoproliferative Malignancies (P Porcu, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Mature T-cell leukemias are a group of uncommon lymphoid neoplasms. These disorders have widely variable clinical features, ranging from indolent, slowly progressive processes to diseases with rapidly progressive courses, leading to death. Cytogenetic aberrations have long been identified in some of these diseases, and recent studies have found recurrent genetic mutations that contribute to their pathogenesis. Conventional multiagent chemotherapy lacks significant efficacy in this group of diseases and therapies vary from immunosuppression to treatment with monoclonal antibodies, antiviral agents, and hematopoietic stem cell transplantation. The recent expansion of knowledge regarding the underlying genetic basis of these disorders raises hope that new, more targeted therapeutic approaches will be available to patients in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Swerdlow SH. International Agency for Research on Cancer, World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  2. Chen X, Cherian S. Immunophenotypic characterization of T-cell prolymphocytic leukemia. Am J Clin Pathol. 2013;140:727–35.

    Article  PubMed  Google Scholar 

  3. Zhang H, Braggio E, Davila J, Feldman AL, Call TG, Witzig TE, et al. Novel phenotypic and genetic analysis of T-cell prolymphocytic leukemia (T-PLL). Blood. 2014;124:1682.

    Google Scholar 

  4. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78:3269–74.

    CAS  PubMed  Google Scholar 

  5. Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103:110–6.

    Article  CAS  PubMed  Google Scholar 

  6. Russo G, Isobe M, Gatti R, Finan J, Batuman O, Huebner K, et al. Molecular analysis of a t(14;14) translocation in leukemic T-cells of an ataxia telangiectasia patient. Proc Natl Acad Sci U S A. 1989;86:602–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM. Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci U S A. 1999;96:2949–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Stern MH, Soulier J, Rosenzwajg M, Nakahara K, Canki-Klain N, Aurias A, et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene. 1993;8:2475–83.

    CAS  PubMed  Google Scholar 

  9. Laine J, Künstle G, Obata T, Sha M, Noguchi M. The protooncogene TCL1 is an AKT kinase coactivator. Mol Cell. 2000;6:395–407.

    Article  CAS  PubMed  Google Scholar 

  10. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S, et al. Tcl1 enhances AKT kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci. 2000;97:3028–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Teitell MA. The TCL1 family of oncoproteins: co-activators of transformation. Nat Rev Cancer. 2005;5:640–8.

    Article  CAS  PubMed  Google Scholar 

  12. Taylor A, Metcalfe J, Thick J, Mak Y. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.

    CAS  PubMed  Google Scholar 

  13. Suarez F, Mahlaoui N, Canioni D, Andriamanga C, d’ Enghien CD, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French National Registry of Primary Immune Deficiencies. J Clin Oncol. 2015;33:202–8.

    Article  PubMed  Google Scholar 

  14. Vořechovský I, Luo L, Dyer MJS, Catovsky D, Amlot PL, Yaxley JC, et al. Clustering of missense mutations in the ataxia-telanglectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17:96–9.

    Article  PubMed  Google Scholar 

  15. Nowak D, Toriellec EL, Stern M-H, Kawamata N, Akagi T, Dyer MJ, et al. Molecular allelokaryotyping of T-cell prolymphocytic leukemia cells with high density single nucleotide polymorphism arrays identifies novel common genomic lesions and acquired uniparental disomy. Haematologica. 2009;94:518–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kiel MJ, Velusamy T, Rolland D, Sahasrabuddhe AA, Chung F, Bailey NG, et al. Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. Blood. 2014;124:1460–72. This study provided the first comprehensive overview of the mutational landscape of T-cell prolymphocytic leukemia, highlighting the mutational activation of the JAK-STAT pathway.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bellanger D, Jacquemin V, Chopin M, Pierron G, Bernard OA, Ghysdael J, et al. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic. Leukemia. 2014;28:417–9.

    Article  CAS  PubMed  Google Scholar 

  18. Stengel A, Kern W, Zenger M, Perglerová K, Schnittger S, Haferlach T, et al. A comprehensive cytogenetic and molecular genetic characterization of patients with T-PLL revealed two distinct genetic subgroups and JAK3 mutations as an important prognostic marker. Blood. 2014;124:1639.

    Article  Google Scholar 

  19. Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A, Lopez C, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer. 2014;53:309–16.

    Article  CAS  PubMed  Google Scholar 

  20. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.

    Article  CAS  PubMed  Google Scholar 

  21. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24:1799–804.

    Article  CAS  PubMed  Google Scholar 

  22. Nikoloski G, Langemeijer SMC, Kuiper RP, Knops R, Massop M, Tönnissen ERLTM, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7.

    Article  CAS  PubMed  Google Scholar 

  23. Pawson R, Dyer MJ, Barge R, Matutes E, Thornton PD, Emmett E, et al. Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol. 1997;15:2667–72.

    CAS  PubMed  Google Scholar 

  24. Keating MJ, Cazin B, Coutré S, Birhiray R, Kovacsovics T, Langer W, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–13.

    Article  CAS  PubMed  Google Scholar 

  25. Dearden C. How I treat prolymphocytic leukemia. Blood. 2012;120:538–51.

    Article  CAS  PubMed  Google Scholar 

  26. Wiktor-Jedrzejczak W, Dearden C, de Wreede L, van Biezen A, Brinch L, Leblond V, et al. Hematopoietic stem cell transplantation in T-prolymphocytic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation and the Royal Marsden Consortium. Leukemia. 2012;26:972–6.

    Article  CAS  PubMed  Google Scholar 

  27. Herling M. Are we improving the outcome for patients with T-cell prolymphocytic leukemia by allogeneic stem cell transplantation? Eur J Haematol. 2015;94:191–2.

    Article  PubMed  Google Scholar 

  28. Hopfinger G, Busch R, Pflug N, Weit N, Westermann A, Fink A-M, et al. Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia. Cancer. 2013;119:2258–67.

    Article  CAS  PubMed  Google Scholar 

  29. Herbaux C, Genet P, Bouabdallah K, Pignon J-M, Debarri H, Guidez S, et al. Bendamustine is effective in T-Cell prolymphocytic leukaemia. Br J Haematol. 2015;168:916–9.

    Article  PubMed  Google Scholar 

  30. Bareau B, Rey J, Hamidou M, Donadieu J, Morcet J, Reman O, et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica. 2010;95:1534–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lundell R, Hartung L, Hill S, Perkins SL, Bahler DW. T-cell large granular lymphocyte leukemias have multiple phenotypic abnormalities involving pan-T-cell antigens and receptors for MHC molecules. Am J Clin Pathol. 2005;124:937–46.

    Article  CAS  PubMed  Google Scholar 

  32. Lamy T, Loughran TP. How I treat LGL leukemia. Blood. 2011;117:2764–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol. 2003;120:1026–36.

    Article  CAS  PubMed  Google Scholar 

  34. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest. 2001;107:351–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–13. This paper first described frequent STAT3 mutations in T-cell large granular lymphocytic leukemia.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jerez A, Clemente MJ, Makishima H, Koskela H, LeBlanc F, Peng Ng K, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120:3048–57. This paper confirmed the presence of STAT3 mutations in T-cell large granular lymphocytic leukemia, and also highlighted the presence of STAT3 mutations in chronic lymphoproliferative disorder of NK cells.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Teramo A, Gattazzo C, Passeri F, Lico A, Tasca G, Cabrelle A, et al. Intrinsic and extrinsic mechanisms contribute to maintain the JAK/STAT pathway aberrantly activated in T-type large granular lymphocyte leukemia. Blood. 2013;121:3843–54.

    Article  CAS  PubMed  Google Scholar 

  38. Rajala HLM, Olson T, Clemente MJ, Lagström S, Ellonen P, Lundan T, et al. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. Haematologica. 2015;100:91–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rajala HLM, Eldfors S, Kuusanmäki H, van Adrichem AJ, Olson T, Lagström S, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121:4541–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kontro M, Kuusanmäki H, Eldfors S, Burmeister T, Andersson EI, Bruserud Ø, et al. Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic. Leukemia. 2014;28:1738–42.

    Article  CAS  PubMed  Google Scholar 

  41. Nicolae A, Xi L, Pittaluga S, Abdullaev Z, Pack SD, Chen J, et al. Frequent STAT5B mutations in γδ hepatosplenic T-cell lymphomas. Leukemia. 2014;28:2244–8.

    Article  CAS  PubMed  Google Scholar 

  42. Küçük C, Jiang B, Hu X, Zhang W, Chan JKC, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6:6025.

    Article  PubMed  Google Scholar 

  43. Moignet A, Hasanali Z, Zambello R, Pavan L, Bareau B, Tournilhac O, et al. Cyclophosphamide as a first-line therapy in LGL. Leukemia. 2014;28:1134–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Shimoyama M. members of The Lymphoma Study Group (1984–87). Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. Br. J. Haematology. 1991;79:428–37.

    CAS  Google Scholar 

  45. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.

    Article  PubMed  Google Scholar 

  46. Proietti FA, Carneiro-Proietti ABF, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene. 2005;24:6058–68.

    Article  CAS  PubMed  Google Scholar 

  47. Hino S. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:152–66.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kohno T, Yamada Y, Akamatsu N, Kamihira S, Imaizumi Y, Tomonaga M, et al. Possible origin of adult T-cell leukemia/lymphoma cells from human T lymphotropic virus type-1-infected regulatory T cells. Cancer Sci. 2005;96:527–33.

    Article  CAS  PubMed  Google Scholar 

  49. Ballard DW, Böhnlein E, Lowenthal JW, Wano Y, Franza BR, Greene WC. HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. Science. 1988;241:1652–5.

    Article  CAS  PubMed  Google Scholar 

  50. Ruben S, Poteat H, Tan TH, Kawakami K, Roeder R, Haseltine W, et al. Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product. Science. 1988;241:89–92.

    Article  CAS  PubMed  Google Scholar 

  51. Takemoto S, Mulloy JC, Cereseto A, Migone TS, Patel BK, Matsuoka M, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci U S A. 1997;94:13897–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Migone T, Lin J, Cereseto A, Mulloy J, O’Shea J, Franchini G, et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science. 1995;269:79–81.

    Article  CAS  PubMed  Google Scholar 

  53. Grassmann R, Aboud M, Jeang K-T. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene. 2005;24:5976–85.

    Article  CAS  PubMed  Google Scholar 

  54. Takeda S, Maeda M, Morikawa S, Taniguchi Y, Yasunaga J, Nosaka K, et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int J Cancer. 2004;109:559–67.

    Article  CAS  PubMed  Google Scholar 

  55. Elliott NE, Cleveland SM, Grann V, Janik J, Waldmann TA, Davé UP. FERM domain mutations induce gain of function in JAK3 in adult T-cell leukemia/lymphoma. Blood. 2011;118:3911–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Nakagawa M, Schmitz R, Xiao W, Goldman CK, Xu W, Yang Y, et al. Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med. 2014;211:2497–505. This paper described recurrent activating CCR4 mutations in adult T-cell leukemia/lymphoma.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ishida T, Utsunomiya A, Iida S, Inagaki H, Takatsuka Y, Kusumoto S, et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9:3625–34.

    CAS  PubMed  Google Scholar 

  58. Yoshida N, Karube K, Utsunomiya A, Tsukasaki K, Imaizumi Y, Taira N, et al. Molecular characterization of chronic-type adult T-cell leukemia/lymphoma. Cancer Res. 2014;74:6129–38.

    Article  CAS  PubMed  Google Scholar 

  59. Kataoka K, Nagata Y, Kitanaka A, Totoki Y, Yasunaga J, Kotani S, et al. Landscape of genetic alterations in adult T-cell leukemia/lymphoma. Blood. 2014;124:75.

    Google Scholar 

  60. Bazarbachi A, Plumelle Y, Ramos JC, Tortevoye P, Otrock Z, Taylor G, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010;28:4177–83.

    Article  CAS  PubMed  Google Scholar 

  61. Bazarbachi A, Suarez F, Fields P, Hermine O. How I treat adult T-cell leukemia/lymphoma. Blood. 2011;118:1736–45.

    Article  CAS  PubMed  Google Scholar 

  62. Ishida T, Hishizawa M, Kato K, Tanosaki R, Fukuda T, Taniguchi S, et al. Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood. 2012;120:1734–41.

    Article  CAS  PubMed  Google Scholar 

  63. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:837–42. This study provided support for the approval of mogamulizumab (KW-0761) for treatment of relapsed/refractory adult T-cell leukemia/lymphoma patients in Japan.

    Article  CAS  Google Scholar 

  64. Ishida T, Jo T, Takemoto S, Suzushima H, Uozumi K, Yamamoto K, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br. J. Haematol. 2015;n/a – n/a

  65. Berkowitz JL, Janik JE, Stewart DM, Jaffe ES, Stetler-Stevenson M, Shih JH, et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol Orlando Florida. 2014;155:176–87.

    Article  CAS  Google Scholar 

  66. Singh R, Zhang Y, Pastan I, Kreitman RJ. Synergistic antitumor activity of anti-CD25 recombinant immunotoxin LMB-2 with chemotherapy. Clin Cancer Res. 2012;18:152–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, et al. Revisions to the staging and classification of mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110:1713–22.

    Article  CAS  PubMed  Google Scholar 

  68. Olsen EA, Whittaker S, Kim YH, Duvic M, Prince HM, Lessin SR, et al. Clinical end points and response criteria in mycosis fungoides and Sézary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2011;29:2598–607.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116:767–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Çetinözman F, Jansen PM, Vermeer MH, Willemze R. Differential expression of programmed death-1 (pd-1) in Sézary syndrome and mycosis fungoides. Arch Dermatol. 2012;148:1379–85.

    Article  PubMed  Google Scholar 

  71. Lin WM, Lewis JM, Filler RB, Modi BG, Carlson KR, Reddy S, et al. Characterization of the DNA copy-number genome in the blood of cutaneous T-cell lymphoma patients. J Investig Dermatol. 2012;132:188–97.

    Article  CAS  PubMed  Google Scholar 

  72. Vermeer MH, Doorn R van, Dijkman R, Mao X, Whittaker S, Vader PC van V, et al. Novel and highly recurrent chromosomal alterations in Sézary syndrome. Cancer Res. 2008;68:2689–98

  73. Mao X, Lillington DM, Czepulkowski B, Russell-Jones R, Young BD, Whittaker S. Molecular cytogenetic characterization of Sézary syndrome. Genes Chromosomes Cancer. 2003;36:250–60.

    Article  CAS  PubMed  Google Scholar 

  74. van Doorn R, van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome. Blood. 2009;113:127–36.

    Article  PubMed  Google Scholar 

  75. Steininger A, Möbs M, Ullmann R, Köchert K, Kreher S, Lamprecht B, et al. Genomic loss of the putative tumor suppressor gene E2A in human lymphoma. J Exp Med. 2011;208:1585–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Lamprecht B, Kreher S, Möbs M, Sterry W, Dörken B, Janz M, et al. The tumour suppressor p53 is frequently nonfunctional in Sézary syndrome. Br J Dermatol. 2012;167:240–6.

    Article  CAS  PubMed  Google Scholar 

  77. Kiel M, Sahasrabuddhe AA, Velusamy T, Chung F, Bailey NG, Betz BL, et al. Integrated genome sequencing reveals frequent loss of function alterations of ARID1A and other epigenetic modifiers in Sézary syndrome. Blood. 2014;124:706. The comprehensive genomic profiling of Sézary syndrome is described, for the first time identifying highly frequent alterations of epigenetic modifying genes in Sézary syndrome.

    Article  Google Scholar 

  78. Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.

    Article  CAS  PubMed  Google Scholar 

  79. Prince HM, Whittaker S, Hoppe RT. How I treat mycosis fungoides and Sézary syndrome. Blood. 2009;114:4337–53.

    Article  CAS  PubMed  Google Scholar 

  80. Hughes CFM, Khot A, McCormack C, Lade S, Westerman DA, Twigger R, et al. Lack of durable disease control with chemotherapy for mycosis fungoides and Sézary syndrome: a comparative study of systemic therapy. Blood. 2015;125:71–81.

    Article  CAS  PubMed  Google Scholar 

  81. Arulogun S, Prince HM, Gambell P, Lade S, Ryan G, Eaton E, et al. Extracorporeal photopheresis for the treatment of Sézary syndrome using a novel treatment protocol. J Am Acad Dermatol. 2008;59:589–95.

    Article  PubMed  Google Scholar 

  82. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Whittaker SJ, Demierre M-F, Kim EJ, Rook AH, Lerner A, Duvic M, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncology. 2010;28:4485–91.

    Article  CAS  Google Scholar 

  84. Olsen EA, Rosen ST, Vollmer RT, Variakojis D, Roenigk Jr HH, Diab N, et al. Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol. 1989;20:395–407.

    Article  CAS  PubMed  Google Scholar 

  85. Duvic M, Hymes K, Heald P, Breneman D, Martin AG, Myskowski P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol Off J Am Soc Clin Oncology. 2001;19:2456–71.

    CAS  Google Scholar 

  86. Lundin J, Hagberg H, Repp R, Cavallin-Ståhl E, Fredén S, Juliusson G, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sézary syndrome. Blood. 2003;101:4267–72.

    Article  CAS  PubMed  Google Scholar 

  87. Duarte RF, Boumendil A, Onida F, Gabriel I, Arranz R, Arcese W, et al. Long-term outcome of allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sézary syndrome: a European society for blood and marrow transplantation lymphoma working party extended analysis. J Clin Oncol. 2014;32:3347–8.

    Article  PubMed  Google Scholar 

  88. Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125:1883–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, et al. Reduction of regulatory T cells by mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in patients with aggressive/refractory mycosis fungoides and Sézary syndrome. Clin Cancer Res. 2015;21:274–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Nathanael G. Bailey and Kojo S.J. Elenitoba-Johnson each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kojo S. J. Elenitoba-Johnson.

Additional information

This article is part of the Topical Collection on T-Cell and Other Lymphoproliferative Malignancies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, N.G., Elenitoba-Johnson, K.S.J. Mature T-cell leukemias: Molecular and Clinical Aspects. Curr Hematol Malig Rep 10, 421–428 (2015). https://doi.org/10.1007/s11899-015-0288-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0288-8

Keywords

Navigation