Skip to main content

Advertisement

Log in

What Do Molecular Tests Add to Prognostic Stratification in MF: Is It Time to Add These to Our Clinical Practice?

  • Myeloproliferative Disorders (C Harrison, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The molecular landscape of patients with myelofibrosis (MF) includes “phenotypic driver” and “subclonal” mutations. The three driver (JAK2, MPL and CALR)-mutated genes currently represent major diagnostic criteria, unlike subclonal mutations that are not specific for the disease and occur in other myeloid neoplasms. Recent data indicate that selected mutations deserve prognostic significance allowing to identify categories of patients with different survival and risk of leukemia. This review focuses on current knowledge regarding genotype-prognostic correlates in MF, however, with the understanding that this is a rapid moving field and no definite recommendations for the clinicians can be done yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  2. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901.

    Article  CAS  PubMed  Google Scholar 

  3. Cervantes F, Dupriez B, Passamonti F, Vannucchi AM, Morra E, Reilly JT, et al. Improving survival trends in primary myelofibrosis: an international study. J Clin Oncol. 2012;30(24):2981–7.

    Article  PubMed  Google Scholar 

  4. Vannucchi AM, Guglielmelli P, Tefferi A. Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin. 2009;59(3):171–91.

    Article  PubMed  Google Scholar 

  5. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hultcrantz M, Kristinsson SY, Andersson TM-L, Landgren O, Eloranta S, Derolf ÅR, et al. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J Clin Oncol. 2012;30(24):2995–3001.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Mesa RA, Verstovsek S, Cervantes F, Barosi G, Reilly JT, Dupriez B, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res. 2007;31(6):737–40.

    Article  PubMed  Google Scholar 

  8. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  9. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    Article  CAS  PubMed  Google Scholar 

  10. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  11. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  12. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. This study, together with the following one by Klapmfl et al., reported the discovery of CALR mutations in patients with ET and PMF lacking the JAK2V617F and MPL mutations.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. This study, together with the previous one by Nangalia et al, reported the discovery of CALR mutations in patients with ET and PMF lacking the JAK2V617F and MPL mutations.

  15. Guglielmelli P, Bartalucci N, Rotunno G, Vannucchi AM. Calreticulin: a new horizon for the testing and treatment of myeloproliferative neoplasms. Expert Rev Hematol. 2014;1–3.

  16. Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28:1407–13. This paper, and the following one, discusses about the proposal to WHO to incoprorate CALR mutations among the novel diagnostic criteria for ET and PM.

    Article  CAS  PubMed  Google Scholar 

  17. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera, essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5:e337. This paper, and the previous one by Tefferi et al., discusses about the proposal to WHO to incoprorate  CALR mutations among the novel diagnostic criteria for ET and PM.

  18. Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4(3):311–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35.

    Article  CAS  PubMed  Google Scholar 

  20. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Nangalia J, Nice FL, Wedge DCD, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015.

  22. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One. 2010;5(6):e11157.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22(7):1299–307.

    Article  CAS  PubMed  Google Scholar 

  24. Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B, et al. JAK2V617F-homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood. 2012;120(13):2704–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood. 2013.

  26. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117(10):2813–6.

    Article  CAS  PubMed  Google Scholar 

  28. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107(5):1864–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Van Etten RA. Mouse models of myeloproliferative neoplasms and their use in preclinical drug testing. ASH Annual Meeting Abstracts. 2010;116(21):SCI-35.

  30. Guglielmelli P, Nangalia J, Green AR, Vannucchi AM. CALR mutations in myeloproliferative neoplasms: hidden behind the reticulum. Am J Hematol. 2014;89(5):453–6.

    Article  CAS  PubMed  Google Scholar 

  31. Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27(10):2032–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tefferi A, Lasho TL, Huang J, Finke C, Mesa RA, Li CY, et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia. 2008;22(4):756–61.

    Article  CAS  PubMed  Google Scholar 

  33. Guglielmelli P, Barosi G, Specchia G, Rambaldi A, Lo Coco F, Antonioli E, et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood. 2009;114(8):1477–83.

    Article  CAS  PubMed  Google Scholar 

  34. Guglielmelli P, Barosi G, Pieri L, Antonioli E, Bosi A, Vannucchi AM. JAK2V617F mutational status and allele burden have little influence on clinical phenotype and prognosis in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis. Haematologica. 2009;94(1):144–6.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2V617F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6.

    Article  CAS  PubMed  Google Scholar 

  36. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.

    Article  CAS  PubMed  Google Scholar 

  37. Barosi G, Bergamaschi G, Marchetti M, Vannucchi AM, Guglielmelli P, Antonioli E, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood. 2007;110(12):4030–6.

    Article  CAS  PubMed  Google Scholar 

  38. Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, et al. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood. 2013;121(21):4388–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, Barosi G, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112:844–7.

    Article  CAS  PubMed  Google Scholar 

  40. Guglielmelli P, Pancrazzi A, Bergamaschi G, Rosti V, Villani L, Antonioli E, et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol. 2007;137(3):244–7.

    Article  CAS  PubMed  Google Scholar 

  41. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.

    Article  CAS  PubMed  Google Scholar 

  42. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28:1494–500. This study, and the following one, identified a favorable prognostic effect of CALR mutations, compared with the other driver mutations, in patienst with PMF.

    Article  CAS  PubMed  Google Scholar 

  43. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR or MPL in primary myelofibrosis. Blood. 2014;124(7):1062–9. This study, and the previous one by tefferi et al., identified a favorable prognostic effect of CALR mutations, compared with the other driver mutations, in patienst with PMF.

  44. Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28:1568–70.

    Article  CAS  PubMed  Google Scholar 

  45. Tefferi A, Lasho TL, Tischer A, Wassie EA, Finke CM, Belachew AA, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124(15):2465–6. This study, and the following one, produced evidence about a muation type-specific prognostic impact of CALR mutations in patients with PMF.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Guglielmelli P, Rotunno G, Fanelli T, Pacilli A, Brogi G, Calabresi L et al. Validation of the differential prognostic impact of type 1/type 1-like versus type 2/type 2-like CALR mutations in myelofibrosis. Blood Cancer J. 2015;2015:In Press. This study, and the previous one by Tefferi et al., produced evidence about a muation type-specific prognostic impact of CALR mutations in patients with PMF.

  47. Cabagnols X, Defour JP, Ugo V, Ianotto JC, Mossuz P, Mondet J, et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia. 2015;29(1):249–52.

    Article  CAS  PubMed  Google Scholar 

  48. Antonioli E, Carobbio A, Pieri L, Pancrazzi A, Guglielmelli P, Delaini F, et al. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica. 2010;95(8):1435–8.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kuriakose ET, Gjoni S, Wang YL, Baumann R, Jones AV, Cross NCP, et al. JAK2V617F allele burden is reduced by busulfan therapy: a new observation using an old drug. Haematologica. 2013;98(11):e135–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated Interferon-alfa-2a induces complete hematological and molecular responses with low toxicity in Polycythemia Vera. Blood. 2008;112(8):3065–72.

    Article  CAS  PubMed  Google Scholar 

  51. Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24.

    Article  CAS  PubMed  Google Scholar 

  52. Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. 2015.

  53. Pieri L, Pancrazzi A, Pacilli A, Rabuzzi C, Rotunno G, Fanelli T, et al. JAK2V617F complete molecular remission in polycythemia vera/essential thrombocythemia patients treated with ruxolitinib. Blood. 2015;125(21):3352–3.

    Article  CAS  PubMed  Google Scholar 

  54. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015;373(10):908–19. First report describing efficacy and toxicity of telomerase inhibitor imetelstat in patients with myelofibrosis.

    Article  PubMed  Google Scholar 

  55. Alchalby H, Badbaran A, Zabelina T, Kobbe G, Hahn J, Wolff D, et al. Impact of JAK2V617F-mutation status, allele burden and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood. 2010;116(18):3572–81.

    Article  CAS  PubMed  Google Scholar 

  56. Lange T, Edelmann A, Siebolts U, Kahl R, Nehring C, Jäkel N et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica. 2013.

  57. Benjamini O, Koren-Michowitz M, Amariglio N, Kroger N, Nagler A, Shimoni A. Relapse of postpolycythemia myelofibrosis after allogeneic stem cell transplantation in a polycythemic phase: successful treatment with donor lymphocyte infusion directed by quantitative PCR test for V617F-JAK2 mutation. Leukemia. 2008;22(10):1961–3.

    Article  CAS  PubMed  Google Scholar 

  58. Kroger N, Alchalby H, Klyuchnikov E, Badbaran A, Hildebrandt Y, Ayuk F, et al. JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. Blood. 2009;113(8):1866–8.

    Article  PubMed  Google Scholar 

  59. Alchalby H, Badbaran A, Bock O, Fehse B, Bacher U, Zander AR, et al. Screening and monitoring of MPL W515L mutation with real-time PCR in patients with myelofibrosis undergoing allogeneic-SCT. Bone Marrow Transplant. 2010;45(9):1404–7.

    Article  CAS  PubMed  Google Scholar 

  60. Rumi E, Passamonti F, Arcaini L, Bernasconi P, Elena C, Pietra D, et al. Molecular remission after allo-SCT in a patient with post-essential thrombocythemia myelofibrosis carrying the MPL (W515A) mutation. Bone Marrow Transplant. 2010;45(4):798–800.

    Article  CAS  PubMed  Google Scholar 

  61. Haslam K, Langabeer SE, Molloy K, McMullin MF, Conneally E. Assessment of CALR mutations in myelofibrosis patients, post-allogeneic stem cell transplantation. Br J Haematol. 2014;166(5):800–2.

    Article  CAS  PubMed  Google Scholar 

  62. Tenedini E, Bernardis I, Artusi V, Artuso L, Roncaglia E, Guglielmelli P, et al. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia. 2014;28:1052–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8.

    Article  CAS  PubMed  Google Scholar 

  64. Puda A, Milosevic JD, Berg T, Klampfl T, Harutyunyan AS, Gisslinger B, et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am J Hematol. 2012;87(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  65. Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 Lesions in Leukemic Transformation. N Engl J Med. 2011;364(5):488–90.

    Article  CAS  PubMed  Google Scholar 

  66. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9. This study provides the first evidence about a prognostic impact of High Molecular Risk (HMR) category in patients with PMF.

    Article  CAS  PubMed  Google Scholar 

  68. Bartels S, Lehmann U, Busche G, Schlue J, Mozer M, Stadler J, et al. SRSF2 and U2AF1 mutations in primary myelofibrosis are associated with JAK2 and MPL but not calreticulin mutation and may independently reoccur after allogeneic stem cell transplantation. Leukemia. 2015;29(1):253–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804–10. Demonstrates an effect of the number of mutations on prognosis.

    Article  CAS  PubMed  Google Scholar 

  70. Vannucchi AM, Guglielmelli P, Rotunno G, Pascutto C, Pardanani A, Ferretti V, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for primary myelofibrosis: an AGIMM & IWG-MRT Project. Blood. 2014;124(21):405.

    Google Scholar 

  71. Guglielmelli P, Biamonte F, Rotunno G, Artusi V, Artuso L, Bernardis I, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II Study. Blood. 2014;123(10):2157–60. This study, and the following one, provided an in-depth analysis of mutated genotype, and prognostic implications, in patients with myelofibrosis receiving ruxolitinib.

    Article  CAS  PubMed  Google Scholar 

  72. Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126(6):790–7. This study, and the previous one by Guglielmelli et al., provided an in-depth analysis of mutated genotype, and prognostic implications, in patients with myelofibrosis receiving ruxolitinib.

Download references

Acknowledgments

This study was supported by a special grant from Associazione Italiana per la Ricerca sul Cancro-“AIRC 5 per Mille”- to AGIMM, “AIRC-Gruppo Italiano Malattie Mieloproliferative” (#1005); for a description of the AGIMM project and list of investigators, see at www.progettoagimm.it/

Compliance with Ethics Guidelines

Conflict of Interest

Paola Guglielmelli, Giada Rotunno, and Annalisa Pacilli each declare no potential conflicts of interest.

Alessandro Maria Vannucchi reports personal fees from Novartis, Shire, and Baxalta and grants from Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Maria Vannucchi.

Additional information

This article is part of the Topical Collection on Myeloproliferative Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmelli, P., Rotunno, G., Pacilli, A. et al. What Do Molecular Tests Add to Prognostic Stratification in MF: Is It Time to Add These to Our Clinical Practice?. Curr Hematol Malig Rep 10, 380–387 (2015). https://doi.org/10.1007/s11899-015-0285-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0285-y

Keywords

Navigation