Skip to main content

Advertisement

Log in

Targeting the Microenvironment in Acute Myeloid Leukemia

  • Acute Myeloid Leukemias (R Stone, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The bone marrow microenvironment plays a critical role in the development, progression, and relapse of acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML blasts express receptors on their surface, allowing them to interact with specific components of the marrow microenvironment. These interactions contribute to both chemotherapy resistance and disease relapse. Preclinical studies and early phase clinical trials have demonstrated the potential for targeting the tumor-microenvironment interactions in AML. Agents currently under investigation include hypoxia-inducible agents and inhibitors of CXCR4 and adhesion molecules such as VLA-4 and E-selectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    CAS  PubMed  Google Scholar 

  2. Bendall LJ et al. Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp Hematol. 1994;22(13):1252–60.

    CAS  PubMed  Google Scholar 

  3. Garrido SM et al. Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol. 2001;29(4):448–57.

    Article  CAS  PubMed  Google Scholar 

  4. Ishikawa F et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21.

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Sexauer A, Levis M. Bone marrow stroma-mediated resistance to FLT3 inhibitors in FLT3-ITD AML is mediated by persistent activation of extracellular regulated kinase. Br J Haematol. 2014;164(1):61–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sexauer A et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sugiyama T et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  8. Omatsu Y et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33(3):387–99.

    Article  CAS  PubMed  Google Scholar 

  9. Greenbaum A et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mohle R et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91(12):4523–30.

    CAS  PubMed  Google Scholar 

  11. Mohle R et al. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br J Haematol. 2000;110(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  12. Rombouts EJ et al. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004;104(2):550–7.

    Article  CAS  PubMed  Google Scholar 

  13. Spoo AC et al. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 2007;109(2):786–91.

    Article  CAS  PubMed  Google Scholar 

  14. Zeng Z et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chen Y et al. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest. 2013;123(6):2395–407. This study demonstrated that CXCR4-mediated downregulation of the microRNA let-7a drives chemoresistance in an AML cell line. Xenograft mice of human AML cell lines engineered to overexpress let-7a were more chemosensitive and showed improved survival.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. DiPersio JF et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J Clin Oncol. 2009;27(28):4767–73.

    Article  CAS  PubMed  Google Scholar 

  17. DiPersio JF et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113(23):5720–6.

    CAS  PubMed  Google Scholar 

  18. Nervi B et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009;113(24):6206–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tavor S et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia. 2008;22(12):2151–5158.

    Article  CAS  PubMed  Google Scholar 

  20. Uy GL et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119(17):3917–24. This is the largest clinical trial to date of chemosensitization by mobilization using plerixafor (a CXCR4 inhibitor) in patients with relapsed or refractory AML. The study demonstrated safety of the combination therapy (plerixafor and chemotherapy) with an overall complete remission and complete remission with incomplete count recovery (CR/CRi) rate of 46%.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Uy GL, et al. Safety and tolerability of plerixafor in combination with cytarabine and daunorubicin in patients with newly diagnosed acute myeloid leukemia- preliminary results from a phase I study. Blood 2011.

  22. Petit I et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3(7):687–94.

    Article  CAS  PubMed  Google Scholar 

  23. Roboz GJ, et al. Combining decitabine with plerixafor yields a high response rate in newly diagnosed older patients with AML. in 55th Ameican Society of Hematology Annual Meeting and Exposition 2013. New Orleans, LA: Blood.

  24. Andreeff M et al. Mobilization and elimination of FLT3-ITD+ acute myelogenous leukemia (AML) stem/progenitor cells by plerixafor/G-CSF/sorafenib: results from a phase I trial in relapsed/refractory AML patients. Blood. 2012;120.

  25. Kuhne MR et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2013;19(2):357–66.

    Article  CAS  Google Scholar 

  26. Becker PS, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of Ulocuplumab (BMS-936564), an anti-CXCR4 antibody, in relapsed/refractory acute myeloid leukemia. Blood 2014.

  27. Galsky MD et al. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(13):3581–8.

    Article  CAS  Google Scholar 

  28. Marasca R, Maffei R. NOX-A12: mobilizing CLL away from home. Blood. 2014;123(7):952–3.

    Article  CAS  PubMed  Google Scholar 

  29. Hoellenriegel J et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood. 2014;123(7):1032–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Peled A et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 2000;95(11):3289–96.

    CAS  PubMed  Google Scholar 

  31. Walter RB et al. High expression of the very late antigen-4 integrin independently predicts reduced risk of relapse and improved outcome in pediatric acute myeloid leukemia: a report from the children's oncology group. J Clin Oncol. 2010;28(17):2831–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Becker PS et al. Very late antigen-4 function of myeloblasts correlates with improved overall survival for patients with acute myeloid leukemia. Blood. 2009;113(4):866–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Matsunaga T et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 2003;9(9):1158–65.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang E, et al. VLA4 Blockade In Acute Myeloid Leukemia. 2013;122:3944-3944.

  35. Bonig H et al. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood. 2008;111(7):3439–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bloomgren G et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80.

    Article  CAS  PubMed  Google Scholar 

  37. Layani-Bazar A et al. Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state. Cancer Res. 2014;74(11):3092–103.

    Article  CAS  PubMed  Google Scholar 

  38. Winkler IG et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651–7. This study demonstrated in mice that E-selectin, expressed on the endothelial cells in the vascular HSC niche, promoted HSC proliferation and exit from the quiescent state, whereas E-selectin antagonism protected HSCs against chemotherapy and irradiation. These results highlight the importance of the microenvironment in HSC fate decisions.

    Article  CAS  PubMed  Google Scholar 

  39. Jin L et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12(10):1167–74.

    Article  PubMed  Google Scholar 

  40. Chien S et al. Adhesion of acute myeloid leukemia blasts to E-selectin in the vascular niche enhances their survival by mechanisms such as Wnt activation. Blood. 2013;122:2161.

    Google Scholar 

  41. Jensen PO et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif. 2000;33(6):381–95.

    Article  CAS  PubMed  Google Scholar 

  42. Giuntoli S et al. Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells. Stem Cells. 2007;25(5):1119–25.

    Article  CAS  PubMed  Google Scholar 

  43. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29(5):591–9.

    Article  PubMed  Google Scholar 

  44. Kornblau SM et al. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood. 2006;108(7):2358–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chen EY et al. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 2001;61(6):2429–33.

    CAS  PubMed  Google Scholar 

  46. Vasseur S et al. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc Natl Acad Sci U S A. 2009;106(4):1111–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sun HL et al. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene. 2007;26(27):3941–51.

    Article  CAS  PubMed  Google Scholar 

  48. Kim DH et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  49. Sarbassov DD et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang H et al. Cellular response to hypoxia involves signaling via Smad proteins. Blood. 2003;101(6):2253–60.

    Article  CAS  PubMed  Google Scholar 

  51. Buckley CD et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol. 2000;165(6):3423–9.

    Article  CAS  PubMed  Google Scholar 

  52. Katoh M, Katoh M. Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. Int J Oncol. 2010;36(2):415–20.

    CAS  PubMed  Google Scholar 

  53. Kremer KN et al. CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak. J Biol Chem. 2013;288(32):22899–914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kremer KN et al. Osteoblasts protect AML cells from SDF-1-induced apoptosis. J Cell Biochem. 2014;115(6):1128–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Portwood S et al. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models. Clin Cancer Res. 2013;19(23):6506–19. TH-302 is a 2-nitroimidazole-linked prodrug which under hypoxic conditions releases an alkylating agent. In this study, TH-302 made chemoresistant human AML cells chemosensitive under hypoxia, demonstrating the role of hypoxia in AML chemoresistance.

    Article  CAS  PubMed  Google Scholar 

  56. Handisides DR, et al. A Phase 1 Study Of TH-302, An Investigational Hypoxia-Targeted Drug, In Patients With Advanced Leukemias. 2013;122:3920-3920.

  57. Krause DS et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med. 2013;19(11):1513–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Armin Rashidi and Dr. Geoffrey L. Uy each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey L. Uy.

Additional information

This article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, A., Uy, G.L. Targeting the Microenvironment in Acute Myeloid Leukemia. Curr Hematol Malig Rep 10, 126–131 (2015). https://doi.org/10.1007/s11899-015-0255-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0255-4

Keywords

Navigation