Skip to main content

Advertisement

Log in

Selecting the Best Frontline Treatment in Chronic Myeloid Leukemia

  • Chronic Myeloid Leukemias (E Jabbour, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

With the discovery of Philadelphia chromosome, understanding of chronic myeloid leukemia (CML) pathobiology has tremendously increased. Development of tyrosine kinase inhibitors (TKI) targeting the BCR/ABL1 oncoprotein has changed the landscape of the disease. Today, the expected survival of CML patients, if properly managed, is likely to be similar to the general population. Imatinib is the first-approved TKI in CML treatment, and for several years, it was the only option in the frontline setting. Four years ago, second-generation TKIs (nilotinib and dasatinib) were approved as alternative frontline options. Now, clinicians are faced the challenge of making decision for which TKI to chose upfront. Second-generation TKIs have been demonstrated to induce deeper and faster responses compared to imatinib; however, none of three TKIs have been shown to have a clear survival advantage, they all are reasonable options. In contrast, when considering therapy in individual patients, the case may be stronger for a specific TKI. Co-morbidities of the patient and side effect profile of the TKI of interest should be an important consideration in decision making. At present, the cost nilotinib or dasatinib is not remarkably different from imatinib. However, patent for imatinib is expected to expire soon, and it will be available as a generic. Clinicians, then, need to weigh the advantages some patients gain with nilotinib or dasatinib in the frontline setting against the difference in cost. Whatever TKI is chosen as frontline, intolerance, non-compliance, or treatment failure should be recognized early as a prompt intervention increases the chance of achieving best possible response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melo JV. The molecular biology of chronic myeloid leukaemia. Leukemia. 1996;10(5):751–6.

    CAS  PubMed  Google Scholar 

  2. Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med. 1996;183(3):811–20.

    Article  CAS  PubMed  Google Scholar 

  3. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824–30.

    Article  CAS  PubMed  Google Scholar 

  4. Ilaria Jr RL, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem. 1996;271(49):31704–10.

    Article  CAS  PubMed  Google Scholar 

  5. Mandanas RA, Leibowitz DS, Gharehbaghi K, et al. Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood. 1993;82(6):1838–47.

    CAS  PubMed  Google Scholar 

  6. Okuda K, Matulonis U, Salgia R, Kanakura Y, Druker B, Griffin JD. Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1. Exp Hematol. 1994;22(11):1111–7.

    CAS  PubMed  Google Scholar 

  7. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A. 1995;92(25):11746–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992;70(6):901–10.

    Article  CAS  PubMed  Google Scholar 

  9. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene. 1996;13(2):247–54.

    CAS  PubMed  Google Scholar 

  10. National Comprehensive Cancer Network. NCCN chronic myelogenous leukemia. 2014; Version 1.2014.

  11. American Cancer Society. Cancer facts and figures 2014. 2014.

  12. Huang X, Cortes J, Kantarjian H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer. 2012;118(12):3123–7.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Silver RT, Woolf SH, Hehlmann R, et al. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood. 1999;94(5):1517–36.

    CAS  PubMed  Google Scholar 

  14. Baccarani M, Druker BJ, Branford S, et al. Long-term response to imatinib is not affected by the initial dose in patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: final update from the Tyrosine Kinase Inhibitor Optimization and Selectivity (TOPS) study. Int J Hematol. 2014;99(5):616–24.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes TP, Saglio G, Kantarjian HM, et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014;123(9):1353–60.

    Article  CAS  PubMed  Google Scholar 

  16. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest. 2000;105(1):3–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Manley PW, Stiefl N, Cowan-Jacob SW, et al. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem. 2010;18(19):6977–86.

    Article  CAS  PubMed  Google Scholar 

  18. Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino AC. Dysregulation of bone remodeling by imatinib mesylate. Blood. 2010;115(4):766–74.

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.

    Article  PubMed  Google Scholar 

  20. Deininger M. International randomized study of interferon Vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Treated with Imatinib. ASH 2009 Abstract 1126. 2009.

  21. Cortes JE, Kantarjian HM, Goldberg SL, et al. High-dose imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: high rates of rapid cytogenetic and molecular responses. J Clin Oncol. 2009;27(28):4754–9.

    Article  CAS  PubMed  Google Scholar 

  22. Baccarani M, Rosti G, Castagnetti F, et al. Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study. Blood. 2009;113(19):4497–504.

  23. Hehlmann R, Lauseker M, Jung-Munkwitz S, et al. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-alpha in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42.

  24. Cortes J, Kantarjian H. How I treat newly diagnosed chronic phase CML. Blood. 2012;120(7):1390–7.

    Article  CAS  PubMed  Google Scholar 

  25. Preudhomme C, Guilhot J, Nicolini FE, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;363(26):2511–21.

    Article  CAS  PubMed  Google Scholar 

  26. Cortes J, Quintas-Cardama A, Jones D, et al. Immune modulation of minimal residual disease in early chronic phase chronic myelogenous leukemia: a randomized trial of frontline high-dose imatinib mesylate with or without pegylated interferon alpha-2b and granulocyte-macrophage colony-stimulating factor. Cancer. 2011;117(3):572–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Deenik W, van der Holt B, Verhoef GE, et al. Dose-finding study of imatinib in combination with intravenous cytarabine: feasibility in newly diagnosed patients with chronic myeloid leukemia. Blood. 2008;111(5):2581–8.

    Article  CAS  PubMed  Google Scholar 

  28. Deenik W, Janssen JJ, van der Holt B, et al. Efficacy of escalated imatinib combined with cytarabine in newly diagnosed patients with chronic myeloid leukemia. Haematologica. 2010;95(6):914–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gardembas M, Rousselot P, Tulliez M, et al. Results of a prospective phase 2 study combining imatinib mesylate and cytarabine for the treatment of Philadelphia-positive patients with chronic myelogenous leukemia in chronic phase. Blood. 2003;102(13):4298–305.

    Article  CAS  PubMed  Google Scholar 

  30. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer. 2006;94(12):1765–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. O’Hare T, Walters DK, Deininger MW, Druker BJ. AMN107: tightening the grip of imatinib. Cancer Cell. 2005;7(2):117–9.

    Article  PubMed  Google Scholar 

  32. Kantarjian HM, Giles FJ, Bhalla KN, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5.

    Article  CAS  PubMed  Google Scholar 

  33. Nicolini FE, Turkina A, Shen ZX, et al. Expanding Nilotinib Access in Clinical Trials (ENACT): an open-label, multicenter study of oral nilotinib in adult patients with imatinib-resistant or imatinib-intolerant Philadelphia chromosome-positive chronic myeloid leukemia in the chronic phase. Cancer. 2012;118(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  34. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9.

    Article  CAS  PubMed  Google Scholar 

  35. Efficacy and Safety of Nilotinib (NIL) vs Imatinib (IM) in patients (pts) with newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP): long-term follow-up (f/u) of ENESTnd. ASH2014 Abstract 4541. 2014.

  36. Rix U, Hantschel O, Durnberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110(12):4055–63.

    Article  CAS  PubMed  Google Scholar 

  37. Aguilera DG, Tsimberidou AM. Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag. 2009;5(2):281–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.

    Article  CAS  PubMed  Google Scholar 

  39. Shah NP, Guilhot F, Cortes JE, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123(15):2317–24.

    Article  CAS  PubMed  Google Scholar 

  40. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70.

    Article  CAS  PubMed  Google Scholar 

  41. Final study results of the phase 3 dasatinib versus imatinib in newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Trial (DASISION, CA180-056). ASH 2014 Abstract 152. 2014.

  42. Spirit 2: an NCRI randomised study comparing dasatinib with imatinib in patients with newly diagnosed CML. ASH 2014 Abstract 517. 2014.

  43. Puttini M, Coluccia AM, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl + neoplastic cells. Cancer Res. 2006;66(23):11314–22.

    Article  CAS  PubMed  Google Scholar 

  44. Cortes JE, Kantarjian HM, Brummendorf TH, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118(17):4567–76.

    Article  CAS  PubMed  Google Scholar 

  45. Khoury HJ, Cortes JE, Kantarjian HM, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–12.

    Article  CAS  PubMed  Google Scholar 

  46. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30(28):3486–92.

    Article  CAS  PubMed  Google Scholar 

  47. Gambacorti-Passerini C, Cortes JE, Lipton JH, et al. Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol. 2014;89(10):947–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.

    Article  CAS  PubMed  Google Scholar 

  50. Lipton JH. Epic: a phase 3 trial of ponatinib compared with imatinib in patients with newly diagnosed Chronic Myeloid Leukemia in Chronic Phase (CP-CML). ASH 2014 Abstract 519. 2014.

  51. Ponatinib as frontline therapy for patients with Chronic Myeloid Leukemia in Chronic Phase (CML-CP). ASH 2014 Abstract 4535. 2014.

  52. Kantarjian HM, Shah NP, Cortes JE, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2012;119(5):1123–9.

    Article  CAS  PubMed  Google Scholar 

  53. Montani D, Bergot E, Gunther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37.

    Article  CAS  PubMed  Google Scholar 

  54. Quintas-Cardama A, Han X, Kantarjian H, Cortes J. Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood. 2009;114(2):261–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Quintas-Cardama A, Kantarjian H, Ravandi F, et al. Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer. 2009;115(11):2482–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. McClelland CM, Harocopos GJ, Custer PL. Periorbital edema secondary to imatinib mesylate. Clin Ophthalmol. 2010;4:427–31.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Kyathari S, Chao K, Liu D, Seiter K. Severe imatinib-associated muscle edema in patients with chronic myelogenous leukemia and marked leukocytosis. Leuk Lymphoma. 2008;49(5):1002–4.

    Article  PubMed  Google Scholar 

  58. Ostro D, Lipton J. Unusual fluid retention with imatinib therapy for chronic myeloid leukemia. Leuk Lymphoma. 2007;48(1):195–6.

    Article  PubMed  Google Scholar 

  59. Kim TD, le Coutre P, Schwarz M, et al. Clinical cardiac safety profile of nilotinib. Haematologica. 2012;97(6):883–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.

    Article  PubMed  Google Scholar 

  61. Kantarjian HM, Fojo T, Mathisen M, Zwelling LA. Cancer drugs in the United States: Justum Pretium—the just price. J Clin Oncol. 2013;31(28):3600–4.

    Article  PubMed Central  PubMed  Google Scholar 

  62. The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: from the perspective of a large group of CML experts. Blood. 2013;121(22):4439–4442.

  63. Vasella D. Magic cancer bullet: how a tiny orange pill is rewriting medical history. New York: Harper Collins Publishers; 2003.

    Google Scholar 

  64. Gleevec (imatinib) Package insert. East Hanover, NJ Novartis Pharmaceuticals Corporation. 2013.

  65. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89(5):547–56.

    Article  CAS  PubMed  Google Scholar 

  66. Himmelstein DU, Thorne D, Warren E, Woolhandler S. Medical bankruptcy in the United States, 2007: results of a national study. Am J Med. 2009;122(8):741–6.

    Article  PubMed  Google Scholar 

  67. Yilmaz M, Kantarjian H, Jabbour E, et al. Similar outcome of patients with chronic myeloid leukemia treated with imatinib in or out of clinical trials. Clin Lymphoma Myeloma Leuk. 2013;13(6):693–9.

    Article  CAS  PubMed  Google Scholar 

  68. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51.

    Article  CAS  PubMed  Google Scholar 

  69. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  PubMed  Google Scholar 

  70. Kantarjian H, Cortes J. Considerations in the management of patients with Philadelphia chromosome-positive chronic myeloid leukemia receiving tyrosine kinase inhibitor therapy. J Clin Oncol. 2011;29(12):1512–6.

    Article  CAS  PubMed  Google Scholar 

  71. Jain P, Kantarjian H, Nazha A, et al. Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood. 2013;121(24):4867–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Marin D, Ibrahim AR, Lucas C, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30(3):232–8.

  73. Branford S, Kim DW, Soverini S, et al. Initial molecular response at 3 months may predict both response and event-free survival at 24 months in imatinib-resistant or -intolerant patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase treated with nilotinib. J Clin Oncol. 2012;30(35):4323–9.

  74. Hanfstein B, Muller MC, Hehlmann R, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26(9):2096–102.

    Article  CAS  PubMed  Google Scholar 

  75. Marin D, Hedgley C, Clark RE, et al. Predictive value of early molecular response in patients with chronic myeloid leukemia treated with first-line dasatinib. Blood. 2012;120(2):291–4.

    Article  CAS  PubMed  Google Scholar 

  76. Nazha A, Kantarjian H, Jain P, et al. Assessment at 6 months may be warranted for patients with chronic myeloid leukemia with no major cytogenetic response at 3 months. Haematologica. 2013;98(11):1686–8.

  77. Branford S. Any BCR-ABL reduction below 10 % At 6 months of therapy significantly improves outcome for CML patients with a poor response at 3 months. ASH 2013 Abstract 254.

  78. Kantarjian HM, O’Brien S, Cortes JE, et al. Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer. 2003;97(4):1033–41.

    Article  CAS  PubMed  Google Scholar 

  79. Quintas-Cardama A, Cortes JE, O’Brien S, et al. Dasatinib early intervention after cytogenetic or hematologic resistance to imatinib in patients with chronic myeloid leukemia. Cancer. 2009;115(13):2912–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Kantarjian HM, Shan J, Jones D, et al. Significance of increasing levels of minimal residual disease in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in complete cytogenetic response. J Clin Oncol. 2009;27(22):3659–63.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Mahon F-X. Long term follow-up after imatinib cessation for patients in deep molecular response: the update results of the STIM1 study. ASH 2013 abstract 255.

  82. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  83. Rea D. Dasatinib or nilotinib discontinuation in Chronic Phase (CP)-Chronic Myeloid Leukemia (CML) Patients (pts) with durably undetectable BCR-ABL transcripts: interim analysis of the STOP 2G-TKI study with a minimum follow-up of 12 months—on behalf of the French CML group Filmc. ASH 2014 Abstract 811.

  84. Mahon. Interim analysis of a pan European stop tyrosine kinase inhibitor trial in chronic myeloid leukemia: The EURO-SKI study. ASH 2014 Abstract 151. 2014.

  85. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

  86. Jabbour E, Cortes J, Nazha A, et al. EUTOS score is not predictive for survival and outcome in patients with early chronic phase chronic myeloid leukemia treated with tyrosine kinase inhibitors: a single institution experience. Blood. 2012;119(19):4524–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Eliasson L, Clifford S, Barber N, Marin D. Exploring chronic myeloid leukemia patients’ reasons for not adhering to the oral anticancer drug imatinib as prescribed. Leuk Res. 2011;35(5):626–30.

    Article  PubMed  Google Scholar 

  88. Hughes T, White D. Which TKI? An embarrassment of riches for chronic myeloid leukemia patients. Hematol Am Soc Hematol Educ Program. 2013;2013:168–75.

    Article  Google Scholar 

  89. White D, Saunders V, Lyons AB, et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood. 2005;106(7):2520–6.

    Article  CAS  PubMed  Google Scholar 

  90. White DL, Saunders VA, Dang P, et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108(2):697–704.

    Article  CAS  PubMed  Google Scholar 

  91. Lucas CM, Harris RJ, Giannoudis A, Copland M, Slupsky JR, Clark RE. Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood. 2011;117(24):6660–8.

    Article  CAS  PubMed  Google Scholar 

  92. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.

    Article  CAS  PubMed  Google Scholar 

  93. White DL, Radich J, Soverini S, et al. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica. 2012;97(6):907–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. White DL, Saunders VA, Dang P, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110(12):4064–72.

    Article  CAS  PubMed  Google Scholar 

  95. White DL, Saunders VA, Dang P, Engler J, Hughes TP. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia. 2010;24(11):1962–5.

    Article  CAS  PubMed  Google Scholar 

  96. White DL. Early molecular response to imatinib in CP-CML patients: the significance of early dose intensity and OCT-1 activity in responders and efficacy of dose escalation and switch to nilotinib in non-responders. ASH 2012 Abstract 693.

  97. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001;353(Pt 3):417–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Lidonnici MR, Audia A, Soliera AR, et al. Expression of the transcriptional repressor Gfi-1 is regulated by C/EBP{alpha} and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells. Cancer Res. 2010;70(20):7949–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Soliera AR, Mariani SA, Audia A, et al. Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1. Leukemia. 2012;26(7):1555–63.

    Article  CAS  PubMed  Google Scholar 

  100. Kok CH, Watkins DB, Leclercq T, D’Andrea RJ, Hughes TP, White DL. Low GFI1 expression in white blood cells of CP-CML patients at diagnosis is strongly associated with subsequent blastic transformation. Leukemia. 2013;27(6):1427–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Musa Yilmaz and Dr. Yasmin Abaza each declare no potential conflicts of interest. Dr. Elias Jabbour is a section editor for Current Hematologic Malignancy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jabbour.

Additional information

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M., Abaza, Y. & Jabbour, E. Selecting the Best Frontline Treatment in Chronic Myeloid Leukemia. Curr Hematol Malig Rep 10, 145–157 (2015). https://doi.org/10.1007/s11899-015-0254-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0254-5

Keywords

Navigation