Skip to main content

Advertisement

Log in

What We Mean When We Talk About MRD in Myeloma. A Review of Current Methods. Part 1 of a Two-Part Series

  • Multiple Myeloma (R Niesvizky, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Assessment of minimal residual disease (MRD) is becoming standard of care for potentially curable cancers, like some leukemias. For diseases not currently curable, like multiple myeloma (MM), the optimal methodology to assess MRD is much less clear, let alone the clinical significance. In this two-part series, we review each of these aspects of MRD in MM. In part 1, we review different methodologies available for MRD assessment, with an emphasis on multiparameter flow cytometry (MFC) and duplex immunohistochemistry. There is currently a strong push in the MM community for the use of MFC, based on studies demonstrating MRD negativity by MFC being associated with delayed time to relapse. After participating in a recent international meeting of leaders in the field, convened to discuss this topic, we review and assess the voiced opinions and published data. While great strides have been made toward the standardization of MFC for MRD, we review not only intrinsic biologic differences between MM and leukemia but also the technical challenges that follow from these differences, including the need for live cells, a difficult to characterize immunophenotype, and significant interlaboratory variability in MFC testing and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Polzer B, Klein CA. Metastasis awakening: the challenges of targeting minimal residual cancer. Nat Med. 2013;19(3):274–5.

    Article  CAS  PubMed  Google Scholar 

  2. Corradini P, Voena C, Tarella C, et al. Molecular and clinical remissions in multiple myeloma: role of autologous and allogeneic transplantation of hematopoietic cells. J Clin Oncol. 1999;17(1):208–15.

    CAS  PubMed  Google Scholar 

  3. Cavo M, Terragna C, Martinelli G, et al. Molecular monitoring of minimal residual disease in patients in long-term complete remission after allogeneic stem cell transplantation for multiple myeloma. Blood. 2000;96(1):355–7.

    CAS  PubMed  Google Scholar 

  4. Martinelli G, Terragna C, Zamagni E, et al. Polymerase chain reaction-based detection of minimal residual disease in multiple myeloma patients receiving allogeneic stem cell transplantation. Haematologica. 2000;85(9):930–4.

    CAS  PubMed  Google Scholar 

  5. Martinelli G, Terragna C, Zamagni E, et al. Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol : Off J Am Soc Clin Oncol. 2000;18(11):2273–81.

    CAS  Google Scholar 

  6. Davies FE, Forsyth PD, Rawstron AC, et al. The impact of attaining a minimal disease state after high-dose melphalan and autologous transplantation for multiple myeloma. Br J Haematol. 2001;112(3):814–9.

    Article  CAS  PubMed  Google Scholar 

  7. Rawstron AC, Child JA, de Tute RM, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the medical research council myeloma IX study. J Clin Oncol. 2013;31(20):2540–7.

    Article  PubMed  Google Scholar 

  8. Hart AJ, Jagasia MH, Kim AS, Mosse CA, Savani BN, Kassim A. Minimal residual disease in myeloma: are we there yet? Biol Blood Marrow Transplant. 2012;18(12):1790–9.

    Article  PubMed  Google Scholar 

  9. Biran N, Ely S, Chari A. Controversies in the Assessment of Minimal Residual Disease in Multiple Myeloma: Clinical Significance of Minimal Residual Disease Negativity Using Highly Sensitive Techniques. Curr Hematol Malig Rep. 2014. doi:10.1007/s11899-014-0237-y

  10. Hartmann L, Biggerstaff JS, Chapman DB, et al. Detection of genomic abnormalities in multiple myeloma: the application of FISH analysis in combination with various plasma cell enrichment techniques. Am J Clin Pathol. 2011;136(5):712–20.

    Article  PubMed  Google Scholar 

  11. Liat Nadav B-ZK, Shoshana B, Lydia Y, Aaron P, Varda D, Benjamin G, et al. Diverse niches within multiple myeloma bone marrow aspirates affect plasma cell enumeration. Br J Haematol. 2006;133(5):530–2.

    Article  PubMed  Google Scholar 

  12. Paiva B, Vidriales M-B, Pérez JJ, et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Vol. 94; 2009.

  13. Pagnucco G, Cardinale G, Gervasi F. Targeting multiple myeloma cells and their bone marrow microenvironment. Ann N Y Acad Sci. 2004;1028(1):390–9.

    Article  CAS  PubMed  Google Scholar 

  14. Colombo M, Mirandola L, Platonova N, et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia. 2013;27(5):1009–18.

    Article  CAS  PubMed  Google Scholar 

  15. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30(14):1663–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sanz MA, Lo Coco F, Martin G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood. 2000;96(4):1247–53.

    CAS  PubMed  Google Scholar 

  17. Walter RB, Gooley TA, Wood BL, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. Journal of clinical oncology. 2011.

  18. Björkholm M, Ohm L, Eloranta S, et al. Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008. J Clin Oncol. 2011;29(18):2514–20.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zhen C, Wang YL. Molecular monitoring of chronic myeloid leukemia: international standardization of BCR-ABL1 quantitation. J Mol Diagn. 2013;15(5):556–64.

    Article  CAS  PubMed  Google Scholar 

  20. Soverini S, Rosti G, Baccarani M, Martinelli G. Molecular monitoring. Curr Hematol Malignancy Rep. 2014;9(1):1–8.

    Article  Google Scholar 

  21. Ely S, Kroft, SH, Reichard, KK, Orazi, A., Foucar, K., Knowles, D., Weiss, L.M. Knowles Neoplastic hematopathology: Wolters Kluwer Health; 2013.

  22. Sailer M, Vykoupil KF, Peest D, Coldewey R, Deicher H, Georgii A. Prognostic relevance of a histologic classification system applied in bone marrow biopsies from patients with multiple myeloma: a histopathological evaluation of biopsies from 153 untreated patients. Eur J Haematol. 1995;54(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  23. Sukpanichnant S, Cousar JB, Leelasiri A, Graber SE, Greer JP, Collins RD. Diagnostic criteria and histologic grading in multiple myeloma: histologic and immunohistologic analysis of 176 cases with clinical correlation. Hum Pathol. 1994;25(3):308–18.

    Article  CAS  PubMed  Google Scholar 

  24. Frassanito MA, Rao L, Moschetta M, et al. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia. 2014;28(4):904–16.

    Article  CAS  PubMed  Google Scholar 

  25. Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol. 2002;160(4):1293–9.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Terpstra WE, Lokhorst HM, Blomjous F, Meuwissen OJ, Dekker AW. Comparison of plasma cell infiltration in bone marrow biopsies and aspirates in patients with multiple myeloma. Br J Haematol. 1992;82(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  27. Joshi R, Horncastle D, Elderfield K, Lampert I, Rahemtulla A, Naresh KN. Bone marrow trephine combined with immunohistochemistry is superior to bone marrow aspirate in follow-up of myeloma patients. J Clin Pathol. 2008;61(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ng A, Wei A, Bhurani D, Chapple P, Feleppa F, Juneja S. The sensitivity of CD138 immunostaining of bone marrow trephine specimens for quantifying marrow involvement in MGUS and myeloma, including samples with a low percentage of plasma cells. Vol. 91; 2006.

  29. Ely S. Using aspirates for multiple myeloma research probably excludes important data. Br J Haematol. 2006;134(2):245–6.

    Article  PubMed  Google Scholar 

  30. Durie BG. US Myeloma Flow Workshop in New York. Myeloma voices, international myeloma foundation: international myeloma foundation; 2014.

  31. Ahmann GJ, Chng WJ, Henderson KJ, et al. Effect of tissue shipping on plasma cell isolation, viability, and RNA integrity in the context of a centralized good laboratory practice-certified tissue banking facility. Cancer Epidemiol Biomark Prev. 2008;17(3):666–73.

    Article  CAS  Google Scholar 

  32. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, (Eds.). WHO classification of tumours of haematopoietic and lymphoid tissues Lyon, France: International Agency for Research on Cancer; 2008.

  33. Anderson KC, Alsina M, Bensinger W, et al. NCCN clinical practice guidelines in oncology: multiple myeloma. J Natl Compr Cancer Netw. 2009;7(9):908–42.

    Google Scholar 

  34. Billadeau D, Ahmann G, Greipp P, Van Ness B. The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell. J Exp Med. 1993;178(3):1023–31.

    Article  CAS  PubMed  Google Scholar 

  35. Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Vol. 122; 2013.

  36. Roschewski M, Stetler-Stevenson M, Yuan C, Mailankody S, Korde N, Landgren O. Minimal residual disease: what are the minimum requirements? J Clin Oncol. 2014;32(5):475–6.

    Article  PubMed  Google Scholar 

  37. Tembhare PR, Yuan CM, Venzon D, et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res. 2014;38(3):371–6.

    Article  PubMed  Google Scholar 

  38. Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365–72.

    CAS  PubMed  Google Scholar 

  39. Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometry remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008.

  40. Chanan-Khan AA, Giralt S. Importance of achieving a complete response in multiple myeloma, and the impact of novel agents. J Clin Oncol. 2010;28(15):2612–24.

    Article  CAS  PubMed  Google Scholar 

  41. Paiva B, Martinez-Lopez J, Vidriales M-B, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. Journal of clinical oncology. 2011.

  42. Paiva B, Gutiérrez NC, Rosiñol L, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Vol. 119; 2012.

  43. Jourdan M, Ferlin M, Legouffe E, et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol. 1998;100(4):637–46.

    Article  CAS  PubMed  Google Scholar 

  44. Ramani VC, Sanderson RD. Chemotherapy stimulates syndecan-1 shedding: a potentially negative effect of treatment that may promote tumor relapse. Matrix Biol. 2014;35:215–22.

    Article  CAS  PubMed  Google Scholar 

  45. van Dongen JJM, Lhermitte L, Bottcher S, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mark T, Jayabalan D, Coleman M, et al. Atypical serum immunofixation patterns frequently emerge in immunomodulatory therapy and are associated with a high degree of response in multiple myeloma. Br J Haematol. 2008.

  47. Kim HS, Kim HS, Shin KS, et al. Clinical comparisons of two free light chain assays to immunofixation electrophoresis for detecting monoclonal gammopathy. Biomed Res Int. 2014;2014:647238.

    PubMed Central  PubMed  Google Scholar 

  48. Kraj M. Immunoglobulin heavy chain/light chain pairs (HLC, Hevylite) assays for diagnosing and monitoring monoclonal gammopathies. Adv Clin Exp Med. 2014;23(1):127–33.

    PubMed  Google Scholar 

  49. Martinez-Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Peceliunas V, Janiulioniene A, Matuzeviciene R, Zvirblis T, Griskevicius L. Circulating plasma cells predict the outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma. 2012;53(4):641–7.

    Article  CAS  PubMed  Google Scholar 

  51. Nowakowski GS, Witzig TE, Dingli D, et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood. 2005;106(7):2276–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Paiva B, Paino T, Sayagues JM, et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood. 2013;122(22):3591–8.

    Article  CAS  PubMed  Google Scholar 

  53. Frisch B, Bartl R. Biopsy interpretation of bone and bone marrow: histology and immunohistology in paraffin and plastic: Arnold; 1999.

  54. Wei A, Westerman D, Feleppa F, Trivett M, Juneja S. Bone marrow plasma cell microaggregates detected by immunohistology predict earlier relapse in patients with minimal disease after high-dose therapy for myeloma. Haematologica. 2005;90(8):1147–9.

    PubMed  Google Scholar 

  55. Zhao X, Huang Q, Slovak M, Weiss L. Comparison of ancillary studies in the detection of residual disease in plasma cell myeloma in bone marrow. Am J Clin Pathol. 2006;125(6):895–904.

    Article  PubMed  Google Scholar 

  56. Chang H, Stewart AK, Qi XY, Li ZH, Yi QL, Trudel S. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Vol. 106; 2005.

  57. Jungbluth AA, Ely S, DiLiberto M, et al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood. 2005;106(1):167–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Noa Biran and Dr. Ajai Chari each declare no potential conflicts of interest.

Dr. Scott Ely reports US Patent No. 8,603,763 issued and a patent pending (Docket No. 19603/6040). He has received US$0 for these inventions.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Ely.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ely, S., Biran, N. & Chari, A. What We Mean When We Talk About MRD in Myeloma. A Review of Current Methods. Part 1 of a Two-Part Series. Curr Hematol Malig Rep 9, 379–388 (2014). https://doi.org/10.1007/s11899-014-0238-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0238-x

Keywords

Navigation