Skip to main content

Advertisement

Log in

Mantle Cell Lymphoma: Taking Therapeutic Advantage of New Insights into the Biology

  • LYMPHOMAS (G NOWAKOWSKI, SECTION EDITOR)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Mantle cell lymphoma (MCL) is an uncommon, incurable B-cell non-Hodgkin’s lymphoma that afflicts the elderly. There is no standard course of treatment, with options varying from observation in asymptomatic patients to aggressive induction/consolidation regimens in younger patients with rapidly progressive disease. Emerging data regarding the role of the ubiquitin-proteasome system, B-cell receptor and mTOR signaling pathways, cell cycle regulation, and epigenetic and immune-modulation in the pathogenesis of MCL have resulted in the development of novel therapies, with a shift away from conventional cytotoxic chemotherapy to relatively less toxic, more targeted treatment. The challenge now is to determine the optimal sequence and combination of the various available and emerging therapies for use in patients with MCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Swerdlow S, Campo E, Muller-Hermelink HK. Mantle cell lymphoma. In: Swerdlow S, Jaffe E, Pileri S, Stein M, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008. p. 229–32.

    Google Scholar 

  2. Martin P, Chadburn A, Christos P, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(8):1209–13.

    Article  Google Scholar 

  3. Eve HE, Furtado MV, Hamon MD, Rule SA. Time to treatment does not influence overall survival in newly diagnosed mantle-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(32):e189–90. author reply e191.

    Article  Google Scholar 

  4. Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367(6):520–31.

    Article  PubMed  CAS  Google Scholar 

  5. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.

    Article  PubMed  CAS  Google Scholar 

  6. Merli F, Luminari S, Ilariucci F, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano Studio Linfomi. Br J Haematol. 2012;156(3):346–53.

    Article  PubMed  CAS  Google Scholar 

  7. Chandran R, Gardiner SK, Simon M, Spurgeon SE. Survival trends in mantle cell lymphoma in the United States over 16 years 1992-2007. Leuk Lymphoma. 2012;53(8):1488–93.

    Article  PubMed  Google Scholar 

  8. Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Wlodarska I, Dierickx D, Vanhentenrijk V, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 2008;111(12):5683–90.

    Article  PubMed  CAS  Google Scholar 

  10. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 1994;13(9):2124–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994;13(15):3487–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Stancovski I, Baltimore D. NF-kappaB activation: the I kappaB kinase revealed? Cell. 1997;91(3):299–302.

    Article  PubMed  CAS  Google Scholar 

  13. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ. Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol. 2003;171(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood. 2006;107(1):257–64.

    Article  PubMed  CAS  Google Scholar 

  15. Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(30):4867–74. This study led to the FDA approval of bortezomib for patients with mantle cell lymphoma who have received at least one prior therapy.

    Article  Google Scholar 

  16. Goy A, Bernstein SH, Kahl BS, et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2009;20(3):520–5.

    Article  CAS  Google Scholar 

  17. Moreau P, Pylypenko H, Grosicki S, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12(5):431–40.

    Article  PubMed  Google Scholar 

  18. Ruan J, Martin P, Furman RR, et al. Bortezomib plus CHOP-rituximab for previously untreated diffuse large B-cell lymphoma and mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(6):690–7.

    Article  CAS  Google Scholar 

  19. Cavalli F, Rooney B, Pei L, Van De Velde H, Robak T. Randomized phase 3 study of rituximab, cyclophosphamide, doxorubicin, and prednisolone plus vincristine (R-CHOP) or bortezomib (VR-CAP) in newly diagnosed mantle cell lymphoma (MCL) patients ineligible for bone marrow transplantation. JCO. 2014;32: 5s, suppl; abstr 8500.

  20. Chang JE, Li H, Smith MR, et al. Phase 2 study of VcR-CVAD with maintenance rituximab for untreated mantle cell lymphoma: an Eastern Cooperative Oncology Group study (E1405). Blood. 2014;123(11):1665–73.

    Article  PubMed  CAS  Google Scholar 

  21. Romaguera JE, Fayad LE, Mclaughlin P, et al. Phase I trial of bortezomib in combination with rituximab-HyperCVAD alternating with rituximab, methotrexate and cytarabine for untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;151(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L, Pham LV, Newberry KJ, et al. In vitro and in vivo therapeutic efficacy of carfilzomib in mantle cell lymphoma: targeting the immunoproteasome. Mol Cancer Ther. 2013;12(11):2494–504.

    Article  PubMed  CAS  Google Scholar 

  23. Hadzidimitriou A, Agathangelidis A, Darzentas N, et al. Is there a role for antigen selection in mantle cell lymphoma? Immunogenetic support from a series of 807 cases. Blood. 2011;118(11):3088–95.

    Article  PubMed  CAS  Google Scholar 

  24. Rinaldi A, Kwee I, Taborelli M, et al. Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol. 2006;132(3):303–16.

    Article  PubMed  CAS  Google Scholar 

  25. Pighi C, Gu TL, Dalai I, et al. Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol. 2011;34(2):141–53.

    Article  CAS  Google Scholar 

  26. Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115(13):2578–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Sharman JP, Klein L, Boxer M, Kolibaba KS, Hawkins MJ, Di Paolo JA, et al. Phase 2 trial of GS-9973, a selective Syk inhibitor, in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Blood. 2013;122(21), Abstract 1643.

  28. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  PubMed  CAS  Google Scholar 

  29. Rizzatti EG, Falcao RP, Panepucci RA, et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol. 2005;130(4):516–26.

    Article  PubMed  CAS  Google Scholar 

  30. Rudelius M, Pittaluga S, Nishizuka S, et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood. 2006;108(5):1668–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Rao E, Jiang C, Ji M, et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012;26(5):1064–72.

    Article  PubMed  CAS  Google Scholar 

  32. Bilancio A, Okkenhaug K, Camps M, et al. Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood. 2006;107(2):642–50.

    Article  PubMed  CAS  Google Scholar 

  33. Hoellenriegel J, Meadows SA, Sivina M, et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12.

    Article  PubMed  CAS  Google Scholar 

  34. Kahl BS, Spurgeon SE, Furman RR, et al. Results of a phase I study of idelalisib, a PI3Kdelta inhibitor, in patients with relapsed or refractory mantle cell lymphoma (MCL). Blood. 2014;123(22):3398.

    Article  PubMed  CAS  Google Scholar 

  35. Wagner-Johnston ND, De Vos S, Leonard JP, Sharman JP, Schreeder MT, Boccia RV, et al. Preliminary results of PI3Kd inhibitor idelalisib (GS-1101) treatment in combination with everolimus, bortezomib or bendamustine/rituximab in patients with previously treated mantle cell lymphoma (MCL). J Clin Oncol. 2013;31 suppl, Abstr 8501.

  36. Dreyling M, Morschhauser F, Bron D, Bouabdallah K, Umberto V, Linton K, et al. Preliminary results of a phase II study of single agent Bay 80-6946, a novel PI3K inhibitor, in patients with relapsed/refractory, indolent or aggressive lymphoma. Blood. 2013;122(21), Abstract 87.

  37. Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361(6409):226–33.

    Article  PubMed  CAS  Google Scholar 

  38. Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72(2):279–90.

    Article  PubMed  CAS  Google Scholar 

  39. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.

    PubMed  CAS  Google Scholar 

  40. Rawlings DJ, Saffran DC, Tsukada S, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261(5119):358–61.

    Article  PubMed  CAS  Google Scholar 

  41. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(1):88–94.

    Article  CAS  Google Scholar 

  42. Wang ML, Rule S, Martin P, et al. Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma. N Engl J Med. 2013. This study led to FDA approval of ibrutinib for patients with mantle cell lymphoma who have received at least one prior therapy.

  43. Laplante M, Sabatini DM. mTOR signaling. Cold Spring Harb Perspect Biol. 2012;4(2).

  44. Peponi E, Drakos E, Reyes G, Leventaki V, Medeiros LJ, Rassidakis GZ. Inhibition of AKT/mTOR signaling induces cell cycle arrest and apoptosis in mantle cell lymphoma. Blood. 2005;106(Abstract 2415).

  45. Hipp S, Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T. Inhibition of the mammalian target of rapamycin and the induction of cell cycle arrest in mantle cell lymphoma cells. Haematologica. 2005;90(10):1433–4.

    PubMed  CAS  Google Scholar 

  46. Witzig TE, Geyer SM, Ghobrial I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(23):5347–56.

    Article  CAS  Google Scholar 

  47. Ansell SM, Inwards DJ, Rowland Jr KM, et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer. 2008;113(3):508–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Hess G, Herbrecht R, Romaguera J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(23):3822–9. This study led to the approval of temsirolimus in Europe for patients with relapsed and/or refractory mantle cell lymphoma.

    Article  CAS  Google Scholar 

  49. O’connor OA, Popplewell L, Winter JN, Yuan R, Robeva A, Cauwel H, et al. PILLAR-1: preliminary results of a phase II study of mTOR inhibitor everolimus in patients with mantle cell lymphoma (MCL) who are refractory or intolerant to bortezomib. Blood. 2010;116(21), Abstract 3963.

  50. Renner C, Zinzani PL, Gressin R, et al. A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica. 2012;97(7):1085–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Witzig TE, Reeder CB, Laplant BR, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. O’Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68.

    Article  PubMed  CAS  Google Scholar 

  54. Gupta M, Hendrickson AE, Yun SS, et al. Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies. Blood. 2012;119(2):476–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Meadows SA, Kashishian A, Johnson D, Ulrich RG, Miller LL, Lannutti BJ. CAL-101 (GS-1101), a specific inhibitor of phosphatidylinositol-3-kinase-delta (PI3Kd), disrupts signals from the microenvironment, induces apoptosis, and enhances the antitumor activity of everolimus (RAD001), an inhibitor of mammalian target of rapamycin (mTOR), in mantle cell lymphoma (MCL). Blood. 2011;121(118), Abstract 3730.

  56. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79(4):551–5.

    Article  PubMed  CAS  Google Scholar 

  57. Quintanilla-Martinez L, Davies-Hill T, Fend F, et al. Sequestration of p27Kip1 protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood. 2003;101(8):3181–7.

    Article  PubMed  CAS  Google Scholar 

  58. Marzec M, Kasprzycka M, Lai R, et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood. 2006;108(5):1744–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    PubMed  CAS  Google Scholar 

  60. Leonard JP, Lacasce AS, Smith MR, et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood. 2012;119(20):4597–607.

    Article  PubMed  CAS  Google Scholar 

  61. Martin P, Di Liberto M, Mason CE, Ely SA, Ruan J, Furman RR, et al. The combination of palbociclib plus bortezomib is safe and active in patients with previously treated mantle cell lymphoma: final results of a phase I trial. Blood. 2013;122(21), Abstract 4393.

  62. Dempsey JA, Chan EM, Burke TF, Beckmann RP. LY2835219, a selective inhibitor of CDK4 and CDK6, inhibits growth in preclinical models of human cancer. Cancer Res. 2013;83(8 Supplement), Abstract LB-122.

  63. Tagawa H, Karnan S, Suzuki R, et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene. 2005;24(8):1348–58.

    Article  PubMed  CAS  Google Scholar 

  64. Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, et al. Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood. 2007;109(1):271–80.

    Article  PubMed  CAS  Google Scholar 

  65. Bea S, Salaverria I, Armengol L, et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood. 2009;113(13):3059–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Touzeau C, Dousset C, Bodet L, et al. ABT-737 induces apoptosis in mantle cell lymphoma cells with a Bcl-2high/Mcl-1low profile and synergizes with other antineoplastic agents. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(18):5973–81.

    Article  CAS  Google Scholar 

  67. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D. The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood. 2007;109(10):4441–9.

    Article  PubMed  CAS  Google Scholar 

  68. Goy A, Ford P, Feldman T, Pecora A, Goldberg S, Donato M, et al. A phase I trial of the pan Bcl-2 family inhibitor obatoclax mesylate (GX15-070) in combination with bortezomib in patients with relapsed/refractory mantle cell lymphoma. Blood. 2007;110, Abstract 2569.

  69. Davids MS, Seymour JF, Gerecitano JF, Kahl BS, Pagel JM, Wierda WG, et al. The single-agent Bcl-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL): Responses observed in all mantle cell lymphoma (MCL patients. Blood. 2013;122 (21), Abstract 1789.

  70. Leshchenko VV, Kuo PY, Shaknovich R, et al. Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood. 2010;116(7):1025–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Enjuanes A, Albero R, Clot G, et al. Genome-wide methylation analyses identify a subset of mantle cell lymphoma with a high number of methylated CpGs and aggressive clinicopathological features. Int J Cancer. 2013;133(12):2852–63.

    PubMed  CAS  Google Scholar 

  72. Heider U, Kaiser M, Sterz J, et al. Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur J Haematol. 2006;76(1):42–50.

    Article  PubMed  CAS  Google Scholar 

  73. Kirschbaum M, Frankel P, Popplewell L, et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(9):1198–203.

    Article  CAS  Google Scholar 

  74. Ogura M, Ando K, Suzuki T et al. A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol. 2014.

  75. Sharma K, Leshchenko VV, Hasanali Z, Stuart A, Shimko S, Spurgeon S, et al. Combined epigenetic and immunotherapy for newly diagnosed mantle cell lymphoma: correlative studies suggest the importance of enhanced ADCC, mechanisms of resistance and cyclin D1 nuclear localization genotype. Blood. 2013;122(21), Abstract 3063.

  76. Spurgeon SE, Pindyck T, Okada C, et al. Cladribine plus rituximab is an effective therapy for newly diagnosed mantle cell lymphoma. Leuk Lymphoma. 2011;52(8):1488–94.

    Article  PubMed  CAS  Google Scholar 

  77. Inwards DJ, Fishkin PA, Hillman DW, et al. Long-term results of the treatment of patients with mantle cell lymphoma with cladribine (2-CDA) alone (95-80-53) or 2-CDA and rituximab (N0189) in the North Central Cancer Treatment Group. Cancer. 2008;113(1):108–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Hasanali Z, Sharma K, Spurgeon S, Okada C, Stuart A, Shimko S, et al. Combined epigenetic and immunotherapy produces dramatic responses in 100% of newly diagnosed mantle cell lymphoma patients. Cancer Res. 2013;73(8 supplement 1), Abstract LB-140.

  79. Gandhi AK, Kang J, Havens CG, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164(6):811–21.

    Article  PubMed  CAS  Google Scholar 

  80. Gaidarova S, Corral LG, Gleizer E, Young D, Brady H, Bennett B, et al. Lenalidomide enhances anti-tumor effect of gamma delta T cells against mantle cell lymphoma. Blood. 2008;112, Abstract 2616.

  81. Song K, Herzog BH, Sheng M, et al. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Cancer Res. 2013;73(24):7254–64.

    Article  PubMed  CAS  Google Scholar 

  82. Goy A, Sinha R, Williams ME, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol Off J Am Soc Clin Oncol. 2013. This study led to the FDA approval of lenalidomide for patients with mantle cell lymphoma who have received at least two prior lines of therapy including bortezomib.

  83. Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, Ottman E, Czuczman MS. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(16):5984–92.

    Article  CAS  Google Scholar 

  84. Ruan J, Martin P, Shah BD, Schuster SJ, Smith SM, Furman RR, et al. Combination biologic therapy without chemotherapy as initial treatment for mantle cell lymphoma: multi-center phase II study of lenalidomide plus rituximab. Blood. 2013;122(21), Abstr 247.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Tiffany Tang declares no potential conflicts of interest.

Dr. Peter Martin reports personal fees from Janssen, personal fees from Celgene, grants from Millennium, personal fees from Gilead, personal fees from Genentech.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Martin, P. Mantle Cell Lymphoma: Taking Therapeutic Advantage of New Insights into the Biology. Curr Hematol Malig Rep 9, 254–261 (2014). https://doi.org/10.1007/s11899-014-0221-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-014-0221-6

Keywords

Navigation