Skip to main content

Advertisement

Log in

Genetic Events Other than BCR-ABL1

  • Chronic Leukemias (J Goldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Savage JR. Classification and relationships of induced chromosomal structural changes. J Med Genet. 1976;13(2):103–22.

    CAS  PubMed  Google Scholar 

  2. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Tsatsanis C, Spandidos DA. The role of oncogenic kinases in human cancer (Review). Int J Mol Med. 2000;5(6):583–90.

    CAS  PubMed  Google Scholar 

  4. Sherr CJ. Principles of tumor suppression. Cell. 2004;116(2):235–46.

    CAS  PubMed  Google Scholar 

  5. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    CAS  PubMed  Google Scholar 

  6. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004;103(11):4010–22.

    CAS  PubMed  Google Scholar 

  7. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.

    CAS  PubMed  Google Scholar 

  8. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–4.

    CAS  PubMed  Google Scholar 

  9. Spiers AS. The clinical features of chronic granulocytic leukaemia. Clin Haematol. 1977;6(1):77–95.

    CAS  PubMed  Google Scholar 

  10. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Perrotti D, Neviani P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013;14(6):e229–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Jabbour E, Parikh SA, Kantarjian H, Cortes J. Chronic myeloid leukemia: mechanisms of resistance and treatment. Hematol Oncol Clin North Am. 2011;25(5):981–95. v.

    PubMed  Google Scholar 

  13. Lamontanara AJ, Gencer EB, Kuzyk O, Hantschel O. Mechanisms of resistance to BCR-ABL and other kinase inhibitors. Biochim Biophys Acta. 2013;1834(7):1449–59.

    CAS  PubMed  Google Scholar 

  14. Jabbour E, Lipton JH. A critical review of trials of first-line BCR-ABL inhibitor treatment in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Clinical Lymphoma Myeloma Leuk. 2013;13(6):646–56.

    CAS  Google Scholar 

  15. Hehlmann R. How I, treat CML blast crisis. Blood. 2012;120(4):737–47.

    CAS  PubMed  Google Scholar 

  16. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Muller MC, Pletsch N, et al. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-alpha in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42.

    CAS  PubMed  Google Scholar 

  17. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.

    CAS  PubMed  Google Scholar 

  18. Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21(24):3214–31.

    CAS  PubMed  Google Scholar 

  19. Kinstrie R, Copland M. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2013;8(1):14–21.

    PubMed  Google Scholar 

  20. Pellicano F, Sinclair A, Holyoake TL. In search of CML stem cells' deadly weakness. Curr Hematol Malig Rep. 2011;6(2):82–7.

    PubMed  Google Scholar 

  21. Muvarak N, Nagaria P, Rassool FV. Genomic instability in chronic myeloid leukemia: targets for therapy? Curr Hematol Malig Rep. 2012;7(2):94–102.

    CAS  PubMed  Google Scholar 

  22. Neubauer A, He M, Schmidt CA, Huhn D, Liu ET. Genetic alterations in the p53 gene in the blast crisis of chronic myelogenous leukemia: analysis by polymerase chain reaction based techniques. Leukemia. 1993;7(4):593–600.

    CAS  PubMed  Google Scholar 

  23. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118(5):1208–15.

    CAS  PubMed  Google Scholar 

  24. Williams RT, Sherr CJ. The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias. Cold Spring Harb Symp Quant Biol. 2008;73:461–7.

    CAS  PubMed  Google Scholar 

  25. Mullighan CG, Williams RT, Downing JR, Sherr CJ. Failure of CDKN2A/B (INK4A/B-ARF)-mediated tumor suppression and resistance to targeted therapy in acute lymphoblastic leukemia induced by BCR-ABL. Genes Dev. 2008;22(11):1411–5.

    CAS  PubMed  Google Scholar 

  26. Grossmann V, Kohlmann A, Zenger M, Schindela S, Eder C, Weissmann S, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9 % of cases. Leukemia. 2011;25(3):557–60.

    CAS  PubMed  Google Scholar 

  27. Ding Y, Harada Y, Imagawa J, Kimura A, Harada H. AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood. 2009;114(25):5201–5.

    CAS  PubMed  Google Scholar 

  28. Roche-Lestienne C, Deluche L, Corm S, Tigaud I, Joha S, Philippe N, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL + leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood. 2008;111(7):3735–41.

    CAS  PubMed  Google Scholar 

  29. Zhao LJ, Wang YY, Li G, Ma LY, Xiong SM, Weng XQ, et al. Functional features of RUNX1 mutants in acute transformation of chronic myeloid leukemia and their contribution to inducing murine full-blown leukemia. Blood. 2012;119(12):2873–82.

    CAS  PubMed  Google Scholar 

  30. Yamamoto K, Tsuzuki S, Minami Y, Yamamoto Y, Abe A, Ohshima K, et al. Functionally deregulated AML1/RUNX1 cooperates with BCR-ABL to induce a blastic phase-like phenotype of chronic myelogenous leukemia in mice. PloS One. 2013;8(9):e74864.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, et al. Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J. 1994;13(3):504–10.

    CAS  PubMed  Google Scholar 

  32. Kurokawa M, Ogawa S, Tanaka T, Mitani K, Yazaki Y, Witte ON, et al. The AML1/Evi-1 fusion protein in the t(3;21) translocation exhibits transforming activity on Rat1 fibroblasts with dependence on the Evi-1 sequence. Oncogene. 1995;11(5):833–40.

    CAS  PubMed  Google Scholar 

  33. Yin CC, Cortes J, Barkoh B, Hayes K, Kantarjian H, Jones D. t(3;21)(q26;q22) in myeloid leukemia: an aggressive syndrome of blast transformation associated with hydroxyurea or antimetabolite therapy. Cancer. 2006;106(8):1730–8.

    CAS  PubMed  Google Scholar 

  34. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31.

    CAS  PubMed  Google Scholar 

  35. Kataoka K, Sato T, Yoshimi A, Goyama S, Tsuruta T, Kobayashi H, et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med. 2011;208(12):2403–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G. EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res. 2009;69(4):1633–42.

    CAS  PubMed  Google Scholar 

  37. Paquette RL, Nicoll J, Chalukya M, Elashoff D, Shah NP, Sawyers C, et al. Frequent EVI1 translocations in myeloid blast crisis CML that evolves through tyrosine kinase inhibitors. Cancer Genet. 2011;204(7):392–7.

    CAS  PubMed  Google Scholar 

  38. Toydemir R, Rowe L, Hibbard M, Salama M, Shetty S. Cytogenetic and molecular characterization of double inversion 3 associated with a cryptic BCR-ABL1 rearrangement and additional genetic changes. Cancer Genet Cytogenet. 2010;201(2):81–7.

    CAS  PubMed  Google Scholar 

  39. De Weer A, Poppe B, Cauwelier B, Carlier A, Dierick J, Verhasselt B, et al. EVI1 activation in blast crisis CML due to juxtaposition to the rare 17q22 partner region as part of a 4-way variant translocation t(9;22). BMC Cancer. 2008;8:193.

    PubMed Central  PubMed  Google Scholar 

  40. Shimada K, Tomita A, Minami Y, Abe A, Hind CK, Kiyoi H, et al. CML cells expressing the TEL/MDS1/EVI1 fusion are resistant to imatinib-induced apoptosis through inhibition of BAD, but are resensitized with ABT-737. Exp Hematol. 2012;40(9):724–37. e2.

    CAS  PubMed  Google Scholar 

  41. Brecqueville M, Rey J, Bertucci F, Coppin E, Finetti P, Carbuccia N, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromosomes Cancer. 2012;51(8):743–55.

    CAS  PubMed  Google Scholar 

  42. Makishima H, Jankowska AM, McDevitt MA, O'Keefe C, Dujardin S, Cazzolli H, et al. CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia. Blood. 2011;117(21):e198–206.

    CAS  PubMed  Google Scholar 

  43. Albano F, Anelli L, Zagaria A, Coccaro N, Minervini A, Rossi AR, et al. Decreased TET2 gene expression during chronic myeloid leukemia progression. Leuk Res. 2011;35(11):e220–2.

    CAS  PubMed  Google Scholar 

  44. Abdel-Wahab O, Manshouri T, Patel J, Harris K, Yao J, Hedvat C, et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 2010;70(2):447–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ, et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood. 2002;99(1):121–9.

    CAS  PubMed  Google Scholar 

  46. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    CAS  PubMed  Google Scholar 

  48. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4.

    CAS  PubMed  Google Scholar 

  50. Nakayama H, Ishimaru F, Avitahl N, Sezaki N, Fujii N, Nakase K, et al. Decreases in Ikaros activity correlate with blast crisis in patients with chronic myelogenous leukemia. Cancer Res. 1999;59(16):3931–4.

    CAS  PubMed  Google Scholar 

  51. Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol. 1997;15:155–76.

    CAS  PubMed  Google Scholar 

  52. Suzuki K, Ono R, Ohishi K, Masuya M, Kataoka I, Liu B, et al. IKAROS isoform 6 enhances BCR-ABL1-mediated proliferation of human CD34+ hematopoietic cells on stromal cells. Int J Oncol. 2012;40(1):53–62.

    CAS  PubMed  Google Scholar 

  53. Lee ST, Ji Y, Kim HJ, Ki CS, Jung CW, Kim JW, et al. Sequential array comparative genomic hybridization analysis identifies copy number changes during blastic transformation of chronic myeloid leukemia. Leuk Res. 2012;36(4):418–21.

    CAS  PubMed  Google Scholar 

  54. Nacheva EP, Brazma D, Virgili A, Howard-Reeves J, Chanalaris A, Gancheva K, et al. Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics. 2010;11:41.

    PubMed Central  PubMed  Google Scholar 

  55. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013;27(11):2165–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Casolari DA, Makri M, Yoshida C, Muto A, Igarashi K, Melo JV. Transcriptional suppression of BACH2 by the Bcr-Abl oncoprotein is mediated by PAX5. Leukemia. 2013;27(2):409–15.

    CAS  PubMed  Google Scholar 

  57. Zhang SJ, Ma LY, Huang QH, Li G, Gu BW, Gao XD, et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2008;105(6):2076–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang SJ, Shi JY, Li JY. GATA-2 L359 V mutation is exclusively associated with CML progression but not other hematological malignancies and GATA-2 P250A is a novel single nucleotide polymorphism. Leuk Res. 2009;33(8):1141–3.

    CAS  PubMed  Google Scholar 

  59. de Oliveira FM, de Carvalho PL, Falcao RP, Simoes BP. A new dic(7;12)(p12.21;p12.2) and i(12)(q10) during the lymphoid blast crisis of patient with Ph + chronic myeloid leukemia. Med Oncol. 2012;29(4):2332–6.

    PubMed  Google Scholar 

  60. Al-Achkar W, Aljapawe A, Almedani S, Liehr T, Wafa A. A novel cytogenetic abnormality t(7;8)(p11.2:q11.2) and a four-way Philadelphia translocation in an imatinib mesylate-resistant chronic myeloid leukemia patient. Oncol Lett. 2013;5(2):617–20.

    PubMed Central  PubMed  Google Scholar 

  61. Al-Achkar W, Wafa A, Almedani S. BCR translocation to derivative chromosome 2: a new case of chronic myeloid leukemia with a complex variant translocation and Philadelphia chromosome. Oncol Lett. 2010;1(3):445–7.

    PubMed Central  PubMed  Google Scholar 

  62. Zhang J, Jin Z, Du Q, Li R, Yao F, Huang B, et al. Analysis of altered proteins related to blast crisis in chronic myeloid leukemia by proteomic study. Int J Lab Hematol. 2012;34(3):267–73.

    CAS  PubMed  Google Scholar 

  63. Notari M, Neviani P, Santhanam R, Blaser BW, Chang JS, Galietta A, et al. A MAPK/HNRPK pathway controls BCR/ABL oncogenic potential by regulating MYC mRNA translation. Blood. 2006;107(6):2507–16.

    CAS  PubMed  Google Scholar 

  64. Kuzelova K, Hrkal Z. Rho-signaling pathways in chronic myelogenous leukemia. Cardiovasc Hematol Disord Drug Targets. 2008;8(4):261–7.

    CAS  PubMed  Google Scholar 

  65. Jagani Z, Song K, Kutok JL, Dewar MR, Melet A, Santos T, et al. Proteasome inhibition causes regression of leukemia and abrogates BCR-ABL-induced evasion of apoptosis in part through regulation of forkhead tumor suppressors. Cancer Res. 2009;69(16):6546–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Quintas-Cardama A, Qiu YH, Post SM, Zhang Y, Creighton CJ, Cortes J, et al. Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer. 2012;118(21):5283–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Morris VA, Zhang A, Yang T, Stirewalt DL, Ramamurthy R, Meshinchi S, et al. MicroRNA-150 expression induces myeloid differentiation of human acute leukemia cells and normal hematopoietic progenitors. PloS One. 2013;8(9):e75815.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Annamaneni S, Kagita S. Gorre M. Satti V, Battini MR. Methylation status of CEBPA gene promoter in chronic myeloid leukemia. Hematology: Digumarti RR; 2013.

    Google Scholar 

  70. Zhao W, He H, Ren K, Li B, Zhang H, Lin Y, et al. MR-1 blocks the megakaryocytic differentiation and transition of CML from chronic phase to blast crisis through MEK dephosphorylation. Blood Cancer J. 2013;3:e107.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Cofre J, Menezes JR, Pizzatti L, Abdelhay E. Knock-down of Kaiso induces proliferation and blocks granulocytic differentiation in blast crisis of chronic myeloid leukemia. Cancer Cell Int. 2012;12(1):28.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Yang Y, Wang S, Zhang Y, Zhu X. Biological effects of decreasing RBM15 on chronic myelogenous leukemia cells. Leuk Lymphoma. 2012;53(11):2237–44.

    CAS  PubMed  Google Scholar 

  73. Harb JG, Neviani P, Chyla BJ, Ellis JJ, Ferenchak GJ, Oaks JJ, et al. Bcl-xL anti-apoptotic network is dispensable for development and maintenance of CML but is required for disease progression where it represents a new therapeutic target. Leukemia. 2013;27(10):1996–2005.

    CAS  PubMed  Google Scholar 

  74. Stoklosa T, Glodkowska-Mrowka E, Hoser G, Kielak M, Seferynska I, Wlodarski P. Diverse mechanisms of mTOR activation in chronic and blastic phase of chronic myelogenous leukemia. Exp Hematol. 2013;41(5):462–9.

    CAS  PubMed  Google Scholar 

  75. Yang J, Ikezoe T, Nishioka C, Udaka K, Yokoyama A. Bcr-Abl activates AURKA and AURKB in chronic myeloid leukemia cells via AKT signaling. Int J Cancer. 2014;134(5):1183–94.

    CAS  PubMed  Google Scholar 

  76. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood. 2007;109(2):500–2.

    CAS  PubMed  Google Scholar 

  77. Rokah OH, Granot G, Ovcharenko A, Modai S, Pasmanik-Chor M, Toren A, et al. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PloS One. 2012;7(4):e35501.

    CAS  PubMed  Google Scholar 

  78. Fabarius A, Leitner A, Hochhaus A, Muller MC, Hanfstein B, Haferlach C, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood. 2011;118(26):6760–8. This study underscores the importance of the early detection of additional cytogenetic abnormalities, which may suggest higher likelihood of blastic transformation and may characterize those patients that need a more aggressive therapeutic intervention at diagnosis.

    CAS  PubMed  Google Scholar 

  79. Pahore ZA, Shamsi TS, Taj M, Farzana T, Ansari SH, Nadeem M, et al. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression. J Col Physicians Surg Pak. 2011;21(8):472–5.

    Google Scholar 

  80. Iovino F, Lentini L, Amato A, Di Leonardo A. RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer. 2006;5:38.

    PubMed Central  PubMed  Google Scholar 

  81. Nakajima T, Moriguchi M, Mitsumoto Y, Sekoguchi S, Nishikawa T, Takashima H, et al. Centrosome aberration accompanied with p53 mutation can induce genetic instability in hepatocellular carcinoma. Mod Pathol. 2004;17(6):722–7.

    CAS  PubMed  Google Scholar 

  82. Giehl M, Fabarius A, Frank O, Hochhaus A, Hafner M, Hehlmann R, et al. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19(7):1192–7.

    CAS  PubMed  Google Scholar 

  83. Patel H, Gordon MY. Abnormal centrosome-centriole cycle in chronic myeloid leukaemia? Br J Haematol. 2009;146(4):408–17.

    CAS  PubMed  Google Scholar 

  84. Haass W, Stehle M, Nittka S, Giehl M, Schrotz-King P, Fabarius A, et al. The proteolytic activity of separase in BCR-ABL-positive cells is increased by imatinib. PloS One. 2012;7(8):e42863. This study shows that treatment with imatinib may further induce centrosome aberations and genomic instability.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Mitelman F, Levan G, Nilsson PG, Brandt L. Non-random karyotypic evolution in chronic myeloid leukemia. Int J Cancer. 1976;18(1):24–30.

    CAS  PubMed  Google Scholar 

  86. Scott LM, Campbell PJ, Baxter EJ, Todd T, Stephens P, Edkins S, et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood. 2005;106(8):2920–1.

    CAS  PubMed  Google Scholar 

  87. Levine RL, Loriaux M, Huntly BJ, Loh ML, Beran M, Stoffregen E, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106(10):3377–9.

    CAS  PubMed  Google Scholar 

  88. Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119(6):1501–10.

    CAS  PubMed  Google Scholar 

  90. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC, et al. BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci U S A. 2008;105(46):17967–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Jiang X, Saw KM, Eaves A, Eaves C. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst. 2007;99(9):680–93.

    CAS  PubMed  Google Scholar 

  93. Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood. 2012;119(18):4253–63. This study highlights a possible mechanism of genomic instability in CML stem cells.

    CAS  PubMed  Google Scholar 

  94. Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121(20):4175–83. This study shows that oxidative DNA damage may occur in LSCs independently of BCR-ABL1.

    CAS  PubMed  Google Scholar 

  95. Warsch W, Walz C, Sexl V. JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood. 2013;122(13):2167–75.

    CAS  PubMed  Google Scholar 

  96. Chen W, Bhatia R. Roles of SIRT1 in leukemogenesis. Curr Opin Hematol. 2013;20(4):308–13.

    CAS  PubMed  Google Scholar 

  97. Crews LA, Jamieson CH. Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett. 2013;338(1):15–22.

    CAS  PubMed  Google Scholar 

  98. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest. 2013;123(10):4144–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Goff DJ, Recart AC, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316–28.

    CAS  PubMed  Google Scholar 

  100. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21(2):266–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Chen JJ, Long ZJ, Xu DF. Xiao RZ. Xu ZF, et al. Inhibition of autophagy augments the anticancer activity of alpha-mangostin in chronic myeloid leukemia cells. Leuk Lymphoma: Liu LL; 2013.

    Google Scholar 

  103. Reddiconto G, Toto C, Palama I, De Leo S, de Luca E, De Matteis S, et al. Targeting of GSK3beta promotes imatinib-mediated apoptosis in quiescent CD34+ chronic myeloid leukemia progenitors, preserving normal stem cells. Blood. 2012;119(10):2335–45.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Drs. D. Perrotti and A.M. Dorrance for editing and critical revision of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Paolo Neviani declares no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Neviani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neviani, P. Genetic Events Other than BCR-ABL1. Curr Hematol Malig Rep 9, 24–32 (2014). https://doi.org/10.1007/s11899-013-0194-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0194-x

Keywords

Navigation