Skip to main content

Advertisement

Log in

Immunology and Immunotherapy of Chronic Myeloid Leukemia

  • Chronic Leukemias (J Goldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic myeloid leukemia (CML) is a clonal bone marrow stem cell neoplasia known to be responsive to immunotherapy. Despite the success of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 oncokinase, patients are not considered to be cured with the current therapy modalities. However, there have been recent advancements in understanding the immunobiology of the disease (such as tumor specific antigens and immunostimulatory agents), and this may lead to the development of novel, curative treatment strategies. Already there are promising results showing that a small proportion of CML patients are able to discontinue the therapy although they have a minimal amount of residual leukemia cells left. This implies that the immune system is able to restrain the tumor cell expansion. In this review, we aim to give a brief update of the novel aspects of the immune system in CML patients and of the developing strategies for controlling CML by the means of immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30:3486–92.

    Article  CAS  PubMed  Google Scholar 

  2. Hochhaus A, Baccarani M, Deininger M, et al. Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia. 2008;22:1200–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110:3540–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  PubMed  Google Scholar 

  5. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9.

    Article  CAS  PubMed  Google Scholar 

  6. Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  7. O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood. 2003;101:4701–7.

    Article  CAS  PubMed  Google Scholar 

  9. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–25.

    Article  CAS  PubMed  Google Scholar 

  10. Lemoli RM, Salvestrini V, Bianchi E, et al. Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib. Blood. 2009;114:5191–200.

    Article  CAS  PubMed  Google Scholar 

  11. Jorgensen HG, Allan EK, Jordanides NE, et al. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood. 2007;109:4016–9.

    Article  CAS  PubMed  Google Scholar 

  12. Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107:4532–9.

    Article  CAS  PubMed  Google Scholar 

  13. The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: from the perspective of a large group of CML experts. Blood. 2013;121:4439–42.

    Article  Google Scholar 

  14. Chen CI, Koschmieder S, Kerstiens L, et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia. 2012;26:465–74.

    Article  CAS  PubMed  Google Scholar 

  15. Rossignol A, Levescot A, Jacomet F, et al. Evidence for BCR-ABL-dependent dysfunctions of iNKT cells from chronic myeloid leukemia patients. Eur J Immunol. 2012;42:1870–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bachy E, Bernaud J, Roy P, et al. Quantitative and functional analyses of CD4(+) CD25(+) FoxP3(+) regulatory T cells in chronic phase chronic myeloid leukaemia patients at diagnosis and on imatinib mesylate. Br J Haematol. 2011;153:139–43.

    Article  CAS  PubMed  Google Scholar 

  17. Christiansson L, Soderlund S, Svensson E, et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS One. 2013;8:e55818.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bocchia M, Gentili S, Abruzzese E, et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet. 2005;365:657–62.

    Article  CAS  PubMed  Google Scholar 

  19. Cathcart K, Pinilla-Ibarz J, Korontsvit T, et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood. 2004;103:1037–42.

    Article  CAS  PubMed  Google Scholar 

  20. Kessler JH, Bres-Vloemans SA, van Veelen PA, et al. BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leukemia. 2006;20:1738–50.

    Article  CAS  PubMed  Google Scholar 

  21. Pinilla-Ibarz J, Shah B, Dubovsky JA. The biological basis for immunotherapy in patients with chronic myelogenous leukemia. Cancer Control. 2009;16:141–52.

    PubMed  Google Scholar 

  22. Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, et al. Synthetic peptide analogs derived from bcr/abl fusion proteins and the induction of heteroclitic human T-cell responses. Haematologica. 2005;90:1324–32.

    CAS  PubMed  Google Scholar 

  23. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86:31–7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rezvani K, Yong AS, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111:236–42.

    Article  CAS  PubMed  Google Scholar 

  25. Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113:6541–8.

    Article  CAS  PubMed  Google Scholar 

  26. Maslak PG, Dao T, Krug LM, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116:171–9.

    Article  CAS  PubMed  Google Scholar 

  27. Dao T, Yan S, Veomett N, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med. 2013;5:176ra33. This study describes a human antibody targeting WT1, which is found in LSCs and solid tumors. The results are promising, but no studies have been done in humans yet.

    Article  CAS  PubMed  Google Scholar 

  28. Al Qudaihi G, Lehe C, Dickinson A, et al. Identification of a novel peptide derived from the M-phase phosphoprotein 11 (MPP11) leukemic antigen recognized by human CD8+ cytotoxic T lymphocytes. Hematol Oncol Stem Cell Ther. 2010;3:24–33.

    CAS  PubMed  Google Scholar 

  29. Greiner J, Ringhoffer M, Taniguchi M, et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp Hematol. 2002;30:1029–35.

    Article  CAS  PubMed  Google Scholar 

  30. Smahel M. Antigens in chronic myeloid leukemia: implications for vaccine development. Cancer Immunol Immunother. 2011;60:1655–68.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng H, Chen Y, Chen S, et al. Expression and distribution of PPP2R5C gene in leukemia. J Hematol Oncol. 2011;4:21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Burchert A, Muller MC, Kostrewa P, et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol. 2010;28:1429–35.

    Article  CAS  PubMed  Google Scholar 

  33. Fujiwara H, El Ouriaghli F, Grube M, et al. Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood. 2004;103:3076–83.

    Article  CAS  PubMed  Google Scholar 

  34. Molldrem JJ, Clave E, Jiang YZ, et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood. 1997;90:2529–34.

    CAS  PubMed  Google Scholar 

  35. Ochi T, Fujiwara H, Suemori K, et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood. 2009;113:66–74.

    Article  CAS  PubMed  Google Scholar 

  36. Cai A, Keskin DB, DeLuca DS, et al. Mutated BCR-ABL generates immunogenic T-cell epitopes in CML patients. Clin Cancer Res. 2012;18:5761–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med. 2013;19:465–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mustjoki S, Richter J, Barbany G, et al. Impact of malignant stem cell burden on therapy outcome in newly diagnosed chronic myeloid leukemia patients. Leukemia. 2013;27:1520–6.

    Article  CAS  PubMed  Google Scholar 

  39. Jaras M, Johnels P, Hansen N, et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A. 2010;107:16280–5. This paper describes leukemia stem cell spesific expression of IL1RAP and its targeting with antibody therapy.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Askmyr M, Agerstam H, Hansen N, et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 2013;121:3709–13. The antibody treatment in this study specifically kills LSCs without affecting the normal HSCs and progenitor cells.

    Article  CAS  PubMed  Google Scholar 

  41. Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.

    CAS  PubMed  Google Scholar 

  42. Casucci M, Perna SK, Falcone L, et al. Graft-versus-leukemia effect of HLA-haploidentical central-memory T-cells expanded with leukemic APCs and modified with a suicide gene. Mol Ther. 2013;21:466–75.

    Article  CAS  PubMed  Google Scholar 

  43. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.

    CAS  PubMed  Google Scholar 

  44. Kijima M, Gardiol N, Held W. Natural killer cell mediated missing-self recognition can protect mice from primary chronic myeloid leukemia in vivo. PLoS One. 2011;6:e27639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Salih J, Hilpert J, Placke T, et al. The BCR/ABL-inhibitors imatinib, nilotinib and dasatinib differentially affect NK cell reactivity. Int J Cancer. 2010;127:2119–28.

    Article  CAS  PubMed  Google Scholar 

  46. Weichsel R, Dix C, Wooldridge L, et al. Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res. 2008;14:2484–91.

    Article  CAS  PubMed  Google Scholar 

  47. Schade AE, Schieven GL, Townsend R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111:1366–77.

    Article  CAS  PubMed  Google Scholar 

  48. Seggewiss R, Lore K, Greiner E, et al. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood. 2005;105:2473–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kreutzman A, Porkka K, Mustjoki S. Immunomodulatory Effects of Tyrosine Kinase Inhibitors. Int Trends Immun. 2013;1:17–28.

    Google Scholar 

  50. Rohon P, Porkka K, Mustjoki S. Immunoprofiling of patients with chronic myeloid leukemia at diagnosis and during tyrosine kinase inhibitor therapy. Eur J Haematol. 2010;85:387–98.

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi Y, Nakamae H, Katayama T, et al. Different immunoprofiles in patients with chronic myeloid leukemia treated with imatinib, nilotinib or dasatinib. Leuk Lymphoma. 2012;53:1084–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mustjoki S, Ekblom M, Arstila TP, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23:1398–405.

    Article  CAS  PubMed  Google Scholar 

  53. Kreutzman A, Juvonen V, Kairisto V, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116:772–82.

    Article  CAS  PubMed  Google Scholar 

  54. Kreutzman A, Ladell K, Koechel C, et al. Expansion of highly differentiated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia. 2011;25:1587–97.

    Article  CAS  PubMed  Google Scholar 

  55. Hassold N, Seystahl K, Kempf K, et al. Enhancement of natural killer cell effector functions against selected lymphoma and leukemia cell lines by dasatinib. Int J Cancer. 2012;131:E916–27.

    Article  CAS  PubMed  Google Scholar 

  56. Uchiyama T, Sato N, Narita M et al. Direct effect of dasatinib on proliferation and cytotoxicity of natural killer cells in in vitro study. Hematol Oncol. 2012;31:156–163

    Google Scholar 

  57. Mustjoki S, Auvinen K, Kreutzman A, et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia. 2013;27:914–24. In this study rapid lymphocyte mobilization and transmigration induced by dasatinib therapy is described. No other TKIs were found to have similar effects.

    Article  CAS  PubMed  Google Scholar 

  58. Tanaka H, Nakashima S, Usuda M. Rapid and sustained increase of large granular lymphocytes and rare cytomegalovirus reactivation during dasatinib treatment in chronic myelogenous leukemia patients. Int J Hematol. 2012;96:308–19.

    Article  CAS  PubMed  Google Scholar 

  59. de Lavallade H, Khoder A, Hart M, et al. Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood. 2013;122:227–38.

    Article  PubMed  Google Scholar 

  60. Pawelec G, Da Silva P, Max H, et al. Relative roles of natural killer- and T cell-mediated anti-leukemia effects in chronic myelogenous leukemia patients treated with interferon-alpha. Leuk Lymphoma. 1995;18:471–8.

    Article  CAS  PubMed  Google Scholar 

  61. de Castro FA, Palma PV, Morais FR, et al. Immunological effects of interferon-alpha on chronic myelogenous leukemia. Leuk Lymphoma. 2003;44:2061–7.

    Article  PubMed  Google Scholar 

  62. Preudhomme C, Guilhot J, Nicolini FE, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;363:2511–21. Clinical study showing the beneficial effect of IFN-a in combination with TKI therapy.

    Article  CAS  PubMed  Google Scholar 

  63. Simonsson B, Gedde-Dahl T, Markevarn B, et al. Combination of pegylated IFN-alpha2b with imatinib increases molecular response rates in patients with low- or intermediate-risk chronic myeloid leukemia. Blood. 2011;118:3228–35. Clinical study showing the beneficial effect of IFN-a in combination with TKI therapy.

    Article  CAS  PubMed  Google Scholar 

  64. Ilander M, Koskenvesa P, Hernesniemi S et al. Induction of sustained deep molecular response in a patient with chronic-phase T315I-mutated chronic myeloid leukemia with interferon-alpha monotherapy. Leuk Lymphoma. 2013. doi:10.3109/10428194.2013.812788

  65. Itonaga H, Tsushima H, Hata T, et al. Successful treatment of a chronic-phase T-315I-mutated chronic myelogenous leukemia patient with a combination of imatinib and interferon-alfa. Int J Hematol. 2012;95:209–13.

    Article  PubMed  Google Scholar 

  66. Cornelison AM, Welch MA, Koller C, Jabbour E. Dasatinib combined with interferon-alfa induces a complete cytogenetic response and major molecular response in a patient with chronic myelogenous leukemia harboring the T315I BCR-ABL1 mutation. Clin Lymphoma Myeloma Leuk. 2011;11 Suppl 1:S111–3.

    Article  PubMed  Google Scholar 

  67. Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients. Clin Cancer Res. 2013;19:5300–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33. Clinical study showing the beneficial effect of anti-PD1 antibody in combination with anti-CTLA4.

    Article  CAS  PubMed  Google Scholar 

  70. Marin D, Gabriel IH, Ahmad S, et al. KIR2DS1 genotype predicts for complete cytogenetic response and survival in newly diagnosed chronic myeloid leukemia patients treated with imatinib. Leukemia. 2012;26:296–302.

    Article  CAS  PubMed  Google Scholar 

  71. Ali S, Sergeant R, O'Brien SG, et al. Dasatinib may overcome the negative prognostic impact of KIR2DS1 in newly diagnosed patients with chronic myeloid leukemia. Blood. 2012;120:697–8.

    Article  CAS  PubMed  Google Scholar 

  72. Kreutzman A, Jaatinen T, Greco D, et al. Killer-cell immunoglobulin-like receptor gene profile predicts good molecular response to dasatinib therapy in chronic myeloid leukemia. Exp Hematol. 2012;40:906–13 e1.

    Article  CAS  PubMed  Google Scholar 

  73. La Nasa G, Caocci G, Littera R, et al. Homozygosity for killer immunoglobin-like receptor haplotype A predicts complete molecular response to treatment with tyrosine kinase inhibitors in chronic myeloid leukemia patients. Exp Hematol. 2013;41:424–31.

    Article  PubMed  Google Scholar 

  74. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  CAS  PubMed  Google Scholar 

  75. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22. Results show that also patients who are successfully able to discontinue TKI therapy have BCR-ABL positive cells left when measured with sensitive DNA based assay.

    Article  CAS  PubMed  Google Scholar 

  76. Ohyashiki K, Katagiri S, Tauchi T, et al. Increased natural killer cells and decreased CD3(+)CD8(+)CD62L(+) T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br J Haematol. 2012;157:254–6.

    Article  CAS  PubMed  Google Scholar 

  77. Mizoguchi I, Yoshimoto T, Katagiri S, et al. Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci. 2013;104(9):1146–53.

    Article  CAS  PubMed  Google Scholar 

  78. Kreutzman A, Rohon P, Faber E, et al. Chronic myeloid leukemia patients in prolonged remission following interferon-alpha monotherapy have distinct cytokine and oligoclonal lymphocyte profile. PLoS One. 2011;6:e23022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

MSc. Mette Ilander and Dr. Can Hekim declare no potential conflicts of interest relevant to this article.

Dr. Satu Mustjoki has received honoraria and research funding from Novartis and Bristol-Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not describe any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satu Mustjoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilander, M., Hekim, C. & Mustjoki, S. Immunology and Immunotherapy of Chronic Myeloid Leukemia. Curr Hematol Malig Rep 9, 17–23 (2014). https://doi.org/10.1007/s11899-013-0190-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0190-1

Keywords

Navigation