Skip to main content

Advertisement

Log in

Preclinical Models for Drug Selection in Myeloproliferative Neoplasms

  • Myeloproliferative Disorders (JJ Kiladjian, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The discovery that an abnormally activated JAK-STAT signaling pathway is central to the pathogenesis of myeloproliferative neoplasms has promoted the clinical development of small-molecule JAK2 inhibitors. These agents have shown remarkable efficacy in disease control, but do not induce molecular remission; on the other hand, interferon holds the promise to target the putative hematopoietic progenitor cell initiating the disease. The presence of additional molecular abnormalities indicates a high molecular complexity of myeloproliferative neoplasms, and the need for simultaneously targeting different targets. Several drugs are currently under study as single agents and in combination. This review briefly describes the several in vitro and in vivo models of myeloproliferative neoplasms that are being used as preclinical models for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7.

    Article  PubMed  CAS  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.

    Google Scholar 

  3. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.

    PubMed  CAS  Google Scholar 

  4. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  PubMed  CAS  Google Scholar 

  5. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    PubMed  CAS  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  PubMed  CAS  Google Scholar 

  7. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  PubMed  CAS  Google Scholar 

  8. Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112:2190–8.

    Article  PubMed  CAS  Google Scholar 

  9. •• Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118:1723–35. An excellent review highligting the mutationla complexity of MPN.

    Article  PubMed  CAS  Google Scholar 

  10. •• Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New Engl J Med. 2012;366:799–807. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.

    Article  PubMed  CAS  Google Scholar 

  11. •• Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. One of two phase III studies demonstrating the clinical efficacy of the anti-JAK1 and JAK2 inhibitor ruxolitinib in MF.

    Article  PubMed  CAS  Google Scholar 

  12. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–40.

    Article  PubMed  Google Scholar 

  13. Vannucchi AM. From palliation to targeted therapy in myelofibrosis. N Engl J Med. 2010;363:1180–2.

    Article  PubMed  CAS  Google Scholar 

  14. •• Bogani C, Bartalucci N, Martinelli S, et al. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms. PLoS ONE. 2013;8:e54826. Evidence using in vitro models of the activity of anti-mTOR compounds in MPN.

    Article  PubMed  CAS  Google Scholar 

  15. Barrio S, Gallardo M, Arenas A, et al. Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm. Br J Haematol. 2013;161:667–76.

    Article  PubMed  CAS  Google Scholar 

  16. Amaru Calzada A, Pedrini O, Finazzi G, et al. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2(V617F) myeloproliferative neoplasm patients. Exp Hematol. 2013;41:253.e2–60.e2.

    Article  Google Scholar 

  17. Hart S, Goh KC, Novotny-Diermayr V, et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia. 2011;25:1751–9.

    Article  PubMed  CAS  Google Scholar 

  18. Fleischman AG, Aichberger KJ, Luty SB, et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118:6392–8.

    Article  PubMed  CAS  Google Scholar 

  19. Nakaya Y, Shide K, Niwa T, et al. Efficacy of NS-018, a potent and selective JAK2/Src inhibitor, in primary cells and mouse models of myeloproliferative neoplasms. Blood Cancer J. 2011;1:e29.

    Article  PubMed  CAS  Google Scholar 

  20. Anand S, Stedham F, Gudgin E, et al. Increased basal intracellular signaling patterns do not correlate with JAK2 genotype in human myeloproliferative neoplasms. Blood. 2011;118:1610–21.

    Article  PubMed  CAS  Google Scholar 

  21. Vicari L, Martinetti D, Buccheri S, et al. Increased phospho-mTOR expression in megakaryocytic cells derived from CD34+ progenitors of essential thrombocythaemia and myelofibrosis patients. Br J Haematol. 2012;159:237–40.

    Article  PubMed  CAS  Google Scholar 

  22. Chou T-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  PubMed  CAS  Google Scholar 

  23. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.

    Article  PubMed  CAS  Google Scholar 

  24. Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006;107:4274–81.

    Article  PubMed  CAS  Google Scholar 

  25. Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108:1652–60.

    Article  PubMed  CAS  Google Scholar 

  26. Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE. 2006;1:e18.

    Article  PubMed  Google Scholar 

  27. Bumm TG, Elsea C, Corbin AS, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 2006;66:11156–65.

    Article  PubMed  CAS  Google Scholar 

  28. Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13:311–20.

    Article  PubMed  CAS  Google Scholar 

  29. Tyner JW, Bumm TG, Deininger J, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115:5232–40.

    Article  PubMed  CAS  Google Scholar 

  30. Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95.

    Article  PubMed  CAS  Google Scholar 

  31. Xing S, Ho WT, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008;111:5109–17.

    Article  PubMed  CAS  Google Scholar 

  32. Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111:3931–40.

    Article  PubMed  CAS  Google Scholar 

  33. •• Kubovcakova L, Lundberg P, Grisouard J, et al. Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. Blood. 2013;121:1188–99. Detailed study of the different mechanisms of action of hydroxyurea and interferon-alpha in a JAK2V617F-mutated animal model of MPN.

    Article  PubMed  CAS  Google Scholar 

  34. Akada H, Yan D, Zou H, et al. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood. 2010;115:3589–97.

    Article  PubMed  CAS  Google Scholar 

  35. Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood. 2010;116:783–7.

    Article  PubMed  CAS  Google Scholar 

  36. Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell. 2010;17:584–96.

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Spensberger D, Ahn JS, et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood. 2010;116:1528–38.

    Article  PubMed  CAS  Google Scholar 

  38. Akada H, Hamada S, Mohi MG. Efficacy of vorinostat in a murine model of polycythemia vera. Blood (ASH Annual Meeting Abstracts). 2010;116 Abstract 629.

  39. •• Mullally A, Bruedigam C, Poveromo L, et al. Depletion of Jak2V617F MPN-propagating stem cells by interferon-alpha in a murine model of polycythemia vera. Blood. 2013;121:3692–702. Evidence using an animal JAK2V617F mutated model that interferon-alpha can target the MPN stem cell.

    Article  PubMed  CAS  Google Scholar 

  40. Ulich TR, del Castillo J, Senaldi G, et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood. 1996;87:5006–15.

    PubMed  CAS  Google Scholar 

  41. Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation- and chemotherapy-induced bone marrow suppression. Blood. 1996;88:778–84.

    PubMed  CAS  Google Scholar 

  42. Cannizzo SJ, Frey BM, Raffi S, et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat Biotechnol. 1997;15:570–3.

    Article  PubMed  CAS  Google Scholar 

  43. Abina MA, Tulliez M, Duffour MT, et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J Immunol. 1998;160:4481–9.

    PubMed  CAS  Google Scholar 

  44. Frey BM, Rafii S, Teterson M, et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J Immunol. 1998;160:691–9.

    PubMed  CAS  Google Scholar 

  45. Yan XQ, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood. 1995;86:4025–33.

    PubMed  CAS  Google Scholar 

  46. Villeval JL, Cohen-Solal K, Tulliez M, et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood. 1997;90:4369–83.

    PubMed  CAS  Google Scholar 

  47. Zhou W, Toombs CF, Zou T, et al. Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood. 1997;89:1551–9.

    PubMed  CAS  Google Scholar 

  48. Kakumitsu H, Kamezaki K, Shimoda K, et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res. 2005;29:761–9.

    Article  PubMed  CAS  Google Scholar 

  49. Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99:739–45.

    Article  PubMed  CAS  Google Scholar 

  50. Chagraoui H, Komura E, Tulliez M, et al. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.

    Article  PubMed  CAS  Google Scholar 

  51. Chagraoui H, Tulliez M, Smayra T, et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood. 2003;101:2983–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wagner-Ballon O, Pisani DF, Gastinne T, et al. Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice. Blood. 2007;110:345–53.

    Article  PubMed  CAS  Google Scholar 

  53. Barosi G, Gattoni E, Guglielmelli P, et al. Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition. Am J Hematol. 2010;85:616–9.

    Article  PubMed  CAS  Google Scholar 

  54. McDevitt MA, Fujiwara Y, Shivdasani RA, Orkin SH. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc Natl Acad Sci U S A. 1997;94:7976–81.

    Article  PubMed  CAS  Google Scholar 

  55. McDevitt MA, Shivdasani RA, Fujiwara Y, et al. A "knockdown" mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci U S A. 1997;94:6781–5.

    Article  PubMed  CAS  Google Scholar 

  56. Vyas P, Ault K, Jackson CW, et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood. 1999;93:2867–75.

    PubMed  CAS  Google Scholar 

  57. Vannucchi AM, Bianchi L, Cellai C, et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1(low) mice). Blood. 2002;100:1123–32.

    Article  PubMed  CAS  Google Scholar 

  58. Vannucchi AM, Migliaccio AR, Paoletti F, et al. Pathogenesis of myelofibrosis with myeloid metaplasia: lessons from mouse models of the disease. Semin Oncol. 2005;32:365–72.

    Article  PubMed  CAS  Google Scholar 

  59. Vannucchi AM, Bianchi L, Paoletti F, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105:3493–501.

    Article  PubMed  CAS  Google Scholar 

  60. Martelli F, Ghinassi B, Panetta B, et al. Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood. 2005;106:4102–13.

    Article  PubMed  CAS  Google Scholar 

  61. Vannucchi AM, Pancrazzi A, Guglielmelli P, et al. Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am J Pathol. 2005;167:849–58.

    Article  PubMed  CAS  Google Scholar 

  62. Migliaccio AR, Martelli F, Verrucci M, et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1(low) mouse model of the disease. Exp Hematol. 2008;36:158–71.

    Article  PubMed  CAS  Google Scholar 

  63. Rosti V, Massa M, Vannucchi AM, et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol Dis. 2007;38:280–6.

    Article  PubMed  CAS  Google Scholar 

  64. Bogani C, Ponziani V, Guglielmelli P, et al. Hypermethylation of CXCR4 promoter in CD34+ cells from patients with primary myelofibrosis. Stem Cells. 2008;26:1920–30.

    Article  PubMed  CAS  Google Scholar 

  65. Verrucci M, Pancrazzi A, Aracil M, et al. CXCR4-independent rescue of the myeloproliferative defect of the Gata1(low) myelofibrosis mouse model by Aplidin(R). J Cell Physiol. 2010;225:490–9.

    Article  PubMed  CAS  Google Scholar 

  66. •• Zingariello M, Martelli F, Ciaffoni F, et al. Characterization of the TGF-beta1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood. 2013;121:3345–63. Strong experimental support of the prominent role of TGF-beta 1 signaling in the GATA-1low animal model of MF.

    Article  PubMed  CAS  Google Scholar 

  67. Baffert F, Regnier C, De Pover A, et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther. 2010;9:1945–55.

    Article  PubMed  CAS  Google Scholar 

  68. Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–17.

    Article  PubMed  CAS  Google Scholar 

  69. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  PubMed  Google Scholar 

  70. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    Article  PubMed  CAS  Google Scholar 

  71. Koppikar P, Abdel-Wahab O, Hedvat C, et al. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis. Blood. 2010;115:2919–27.

    Article  PubMed  CAS  Google Scholar 

  72. Wernig G, Kharas MG, Mullally A, et al. EXEL-8232, a small-molecule JAK2 inhibitor, effectively treats thrombocytosis and extramedullary hematopoiesis in a murine model of myeloproliferative neoplasm induced by MPLW515L. Leukemia. 2012;26:720–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a special grant from the Associazione Italiana per la Ricerca sul Cancro – “AIRC 5 per Mille” – to the AGIMM Project, “AIRC - Gruppo Italiano Malattie Mieloproliferative” (#1005); for a description of the AGIMM project, see www.progettoagimm.it). Also supported by the Ministero della Università e Ricerca (MIUR; FIRB project #RBAP11CZLK). C. Bogani was supported by a scholarship from SIES, “Società Italiana Ematologia Sperimentale”.

Compliance with Ethics Guidelines

Conflict of Interest

Niccolò Bartalucci and Costanza Bogani declare that they have no conflict of interest.

Alessandro M. Vannucchi has served as an advisory board member for Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro M. Vannucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartalucci, N., Bogani, C. & Vannucchi, A.M. Preclinical Models for Drug Selection in Myeloproliferative Neoplasms. Curr Hematol Malig Rep 8, 317–324 (2013). https://doi.org/10.1007/s11899-013-0182-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0182-1

Keywords

Navigation