Current Hematologic Malignancy Reports

, Volume 8, Issue 4, pp 342–350 | Cite as

Molecular Classification of Myeloproliferative Neoplasms—Pros and Cons

Myeloproliferative Disorders (JJ Kiladjian, Section Editor)


Dameshek first postulated a common myeloproliferative heritage for the myeloproliferative disorders, now termed neoplasms. This prescient observation was validated by the description of a common mutation in exon 14 of JAK2 for patients with essential thrombocythemia, polycythemia vera and primary myelofibrosis. In recent years, our knowledge of the molecular abnormalities underpinning these disorders has expanded significantly. At the same time, we have continued to use a classification based largely upon the first clinical descriptions of these entities, which sometimes proves problematic in differentiating between these conditions and normal reactive processes, myelodysplasia and between the myeloproliferative neoplasm entities themselves. Here, we discuss the pros and cons of a molecular classification and its potential utility in diagnosis, prognosis, and therapeutics.


Myeloproliferative neoplasms Molecular pathology Polycythemia vera Essential thrombocythemia Primary myelofibrosis JAK/STAT Epigenetics Hematologic malignancy 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia. 2008;22(1):3–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.PubMedGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115(17):3842–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Beer PA, Erber WN, Campbell PJ, Green AR. How I treat essential thrombocythemia. Blood. 2011;117(5):1472–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Laubach JP, Fu P, Jiang X, Salter KH, Potti A, Arcasoy MO. Polycythemia vera erythroid precursors exhibit increased proliferation and apoptosis resistance associated with abnormal RAS and PI3K pathway activation. Exp Hematol. 2009;37(12):1411–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Bersenev A, Wu C, Balcerek J, Jing J, Kundu M, Blobel GA, et al. Lnk constrains myeloproliferative diseases in mice. J Clin Invest. 2010;120(6):2058–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Suzuki N, Yamazaki S, Ema H, Yamaguchi T, Nakauchi H, Takaki S. Homeostasis of hematopoietic stem cells regulated by the myeloproliferative disease associated-gene product Lnk/Sh2b3 via Bcl-xL. Exp Hematol. 2012;40(2):166–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Seeger T, Schanne D, Pahl H. Expression of the transcription factor NF-E2 is regulated via the novel epigenetic JAK2/H3Y41PH/HP1A pathway [abstract]. Haematol EHA Abstr Book. 2013;98(s1):106.Google Scholar
  10. 10.
    Peeken J, Wehrle J, Gothwal M, Seeger T, Pahl H. Characterization of JMJD1C and JMJD2C as novel NF-E2 target genes [abstract]. Haematol EHA Abstr Book. 2013;98(s1):106.Google Scholar
  11. 11.
    • Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209(2)):259–73. First descriptions of mechanisms of JAK 2 inhibitor resistance in vitro and mechanisms to potentially overcome them.PubMedCrossRefGoogle Scholar
  12. 12.
    • Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489:155–9. First descriptions of mechanisms of JAK 2 inhibitor resistance in vitro and mechanisms to potentially overcome them.PubMedCrossRefGoogle Scholar
  13. 13.
    Akada H, Akada S, Yan D, Hutchison R, Mohi G. Loss of wild-type Jak2 allele enhances myeloid cell expansion and accelerates myelofibrosis in Jak2V617F knock-in mice [abstract]. ASH Annu Meet Abstra. 2012;120:809.Google Scholar
  14. 14.
    Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111(8):3931–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.PubMedCrossRefGoogle Scholar
  16. 16.
    • Godfrey AL, Chen E, Pagano F, Ortmann CA, Silber Y, Bellosillo B, et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood. 2012;120(13):2704–7. Insight into clonal expansion in MPN and its role in disease phenotype.PubMedCrossRefGoogle Scholar
  17. 17.
    Saliba J, Hamidi S, Stefano AD, Langlois T, Lenglet G, Secardin L, et al. Modeling JAK2V617F heterozygous and homozygous mutations by using induced pluripotent stem cells derived from myeloproliferative neoplasms patients [abstract]. ASH Annu Meet Abstra. 2012;120:1758.Google Scholar
  18. 18.
    Godfrey AL, Chen E, Pagano F, Silber Y, Campbell PJ, Green AR. Clonal analyses reveal associations of JAK2V617F homozygosity with hematologic features, age and gender in polycythemia vera and essential thrombocythemia. Haematologica. 2013;98:718–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang L, Yao H, Ma Y. JAK2 signaling specifies phenotypic pleiotropy in myeloproliferative neoplasms [abstract]. ASH Annu Meet Abstra. 2012;120:2868.Google Scholar
  20. 20.
    Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol. 2011;86(8):668–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Pérez C, Pascual M, Martin-Subero JI, Bellosillo B, Segura V, Delabesse E et al. Aberrant DNA methylation profile of chronic and transformed classic philadelphia-negative myeloproliferative neoplasms. Haematologica 2013 May 28 [Epub ahead of print].Google Scholar
  22. 22.
    • Nischal S, Bhattacharyya S, Christopeit M, Yu Y, Zhou L, Bhagat TD, et al. Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms. Cancer Res. 2013;73(3):1076–85. Data regarding methylation and modification of DNA in the different subtypes of MPN.PubMedCrossRefGoogle Scholar
  23. 23.
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.PubMedCrossRefGoogle Scholar
  24. 24.
    • Zhan H, Cardozo C, Raza A. MicroRNAs in myeloproliferative neoplasms. BJH. 2013;161:471–83. A useful review of micro RNA and discussion of data regarding their potential role in MPN.PubMedCrossRefGoogle Scholar
  25. 25.
    • Zhan H, Cardozo C, Yu W, Wang A, Moliterno AR, Dang CV, et al. MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. Blood Cells Mol Dis. 2012;50:190–5. A useful review of micro RNA and discussion of data regarding their potential role in MPN.PubMedCrossRefGoogle Scholar
  26. 26.
    Hinds DA, Barnholt KE, Zehnder JL, Kiefer AK, Do CB, Eriksson N, et al. A germline variant in the TERT gene is a novel predisposition allele associated with myeloproliferative neoplasms [abstract]. ASH Annu Meet Abstra. 2012;120:707.Google Scholar
  27. 27.
    Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2 617V> F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Barosi G, Poletto V, Massa M, Campanelli R, Villani L, Bonetti E, et al. JAK2 V617F genotype is a strong determinant of blast transformation in primary myelofibrosis. PLoS One. 2013;8(3):e59791.PubMedCrossRefGoogle Scholar
  30. 30.
    •• Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013 Apr 26 [Epub ahead of print]. Novel and strong data supporting the incorporation of molecular data into clinical risk profile and perhaps then into classification. Google Scholar
  31. 31.
    •• Lasho TL, Gangat N, Finke C, Laborde RR, Hanson CA, Ketterling RP, et al. Prognostic Interactions Between SRSF2, ASXL1, and IDH Mutations in Primary Myelofibrosis and Determination of Added Value to Cytogenetic Risk Stratification and DIPSS-Plus [abstract]. ASH Annu Meet Abstra. 2012;120:430. Novel and strong data supporting the incorporation of molecular data into clinical risk profile and perhaps then into classification.Google Scholar
  32. 32.
    Moliterno AR, Williams DM, McDevitt MA, Stein BL, Gerber JM, Rogers O, et al. Polycythemia Vera: redefinition in the genomic era [abstract]. ASH Annu Meet Abstra. 2012;120:1754.Google Scholar
  33. 33.
    Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115(15):3109–17.PubMedCrossRefGoogle Scholar
  34. 34.
    •• Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807. JAK inhibitor trials in myelofibrosis.PubMedCrossRefGoogle Scholar
  35. 35.
    •• Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98. JAK inhibitor trials in myelofibrosis.PubMedCrossRefGoogle Scholar
  36. 36.
    Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med. 2010;363(12):1117–27.PubMedCrossRefGoogle Scholar
  37. 37.
    Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol. 2011;29(7):789–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Talpaz M, Jamieson C, Gabrail NY, Lebedinsky C, Gao G, Liu F, et al. A phase II randomized dose-ranging study of the JAK2-selective inhibitor SAR302503 in patients with intermediate-2 or High-Risk Primary Myelofibrosis (MF), Post-Polycythemia Vera (PV) MF, or Post-Essential Thrombocythemia (ET) MF. [abstract]. ASH Annu Meet Abstra. 2012;120:2837.Google Scholar
  39. 39.
    Komrokji R, Wadleigh M, Seymour J, Roberts A, To L, Zhu H, et al. Results of a phase 2 study of pacritinib (SB1518), a novel oral JAK2 inhibitor, in patients with primary, post-polycythemia vera, and post-essential thrombocythemia myelofibrosis [abstract]. ASH Annu Meet Abstra. 2011;118:282.Google Scholar
  40. 40.
    Pardanani A, Laborde RR, Lasho TL, Finke C, Begna K, Al-Kali A, et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia. 2013;6:1322–7.CrossRefGoogle Scholar
  41. 41.
    Deshpande A, Reddy MM, Schade GO, Ray A, Chowdary TK, Griffin JD, et al. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Leukemia. 2012;26(4):708–15.PubMedCrossRefGoogle Scholar
  42. 42.
    Jamal R, Belisle C, Lessard MC, Hebert J, Roy DC, Levine R, et al. Evidence suggesting the presence of a stem cell clone anteceding the acquisition of the JAK2-V617F mutation. Leukemia. 2008;22:1472–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Barrio S, Gallardo M, Arenas A, Ayala R, Rapado I, Rueda D, et al. Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm. BJH. 2013;161:667–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119(15):3550–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Choong ML, Pecquet C, Tai SJ, Yong JWY, Pendharkar V, Wang S, et al. Combination treatment with JAK2 and PI3K inhibitors in myeloproliferative neoplasms [abstract]. ASH Annu Meet Abstra. 2012;120:180.Google Scholar
  46. 46.
    Vannucchi AM, Bartalucci N, Bogani C, Martinelli S, Tozzi L, Bosi A, et al. Combined inhibition of JAK2 and mTOR signaling results in enhanced efficacy in in-vitro and preclinical mouse models of JAK2V617F-driven myeloproliferative disease [abstract]. ASH Annu Meet Abstra. 2012;120:708.Google Scholar
  47. 47.
    Guglielmelli P, Barosi G, Rambaldi A, Marchioli R, Masciulli A, Tozzi L, et al. Safety and efficacy of everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood. 2011;118(8):2069–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Bogani C, Bartalucci N, Martinelli S, Tozzi L, Guglielmelli P, Bosi A, et al. mTOR inhibitors alone and in combination with JAK2 inhibitors effectively inhibit cells of myeloproliferative neoplasms. PLoS One. 2013;8(1):e54826.PubMedCrossRefGoogle Scholar
  49. 49.
    Fiskus W, Verstovsek S, Manshouri T, Smith JE, Peth K, Abhyankar S, et al. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Mol Cancer Ther. 2013;12(5):577–88.PubMedCrossRefGoogle Scholar
  50. 50.
    Levine RL, Koppikar P, Marubayashi S, Bhagwat N, Taldone T, Park Y, et al. Combination therapy using JAK2 and HSP90 inhibitors increased efficacy in myelofibrosis in vivo [abstract]. ASH Annu Meet Abstra. 2012;120:805.Google Scholar
  51. 51.
    Wang Y, Fiskus W, Chong DG, Buckley KM, Natarajan K, Rao R, et al. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood. 2009;114(24):5024–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Deangelo DJ, Mesa RA, Fiskus W, Tefferi A, Paley C, Wadleigh M, et al. Phase II trial of panobinostat, an oral pan-deacetylase inhibitor in patients with primary myelofibrosis, post-essential thrombocythaemia, and post-polycythaemia vera myelofibrosis. BJH. 2013. doi:10.1111/bjh.12384 [Epub ahead of print].PubMedGoogle Scholar
  53. 53.
    Mascarenhas J, Lu M, Li T, Petersen B, Hochman T, Najfeld V, et al. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). BJH. 2013;161(1):68–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Harrison C, Kiladjian JJ, Passamonti F, Vannucchi A, Acharyya S, Woo M, et al. A phase 1B, dose-finding study of ruxolitinib plus panobinostat in patients with primary myelofibrosis (MF), post-polycythemia vera MF (PPV-MF), or post-essential thrombocythemia MF (PET-MF) [abstract]. Haematol EHA Abstr Book. 2012;97(s1):146.Google Scholar
  55. 55.
    Akada H, Akada S, Gajra A, Bair A, Graziano S, Hutchison RE, et al. Efficacy of vorinostat in a murine model of polycythemia vera. Blood. 2012;119(16):3779–89.PubMedCrossRefGoogle Scholar
  56. 56.
    Andersen CL, McMullin MF, Ejerblad E, Zweegman S, Harrison C, Fernandes S, et al. A phase II study of vorinostat (MK-0683) in patients with polycythaemia vera and essential thrombocythaemia. BJH. 2013. doi:10.1111/bjh.12416 [Epub ahead of print].PubMedGoogle Scholar
  57. 57.
    Finazzi G, Vannucchi AM, Martinelli V, Ruggeri M, Nobile F, Specchia G, et al. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. BJH. 2013;161(5):688–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, et al. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms. Exp Hematol. 2013;41(3):261–70.PubMedCrossRefGoogle Scholar
  59. 59.
    Mesa RA. The evolving treatment paradigm in myelofibrosis. Leuk Lymphoma. 2013;54(2):242–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Mullally A, Bruedigam C, Poveromo L, Heidel FH, Purdon A, Vu T, et al. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood. 2013;121(18):3692–702.PubMedCrossRefGoogle Scholar
  61. 61.
    Quintás-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107(5):1864–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Baerlocher GM, Leibundgut EO, Ayran C, Blaney M, Burington B, Morfeld D, et al. Imetelstat rapidly induces and maintains substantial hematologic and molecular responses in patients with Essential Thrombocythemia (ET) who are refractory or intolerant to prior therapy: preliminary phase II results [abstract]. ASH Annu Meet Abstra. 2012;120:179.Google Scholar
  64. 64.
    Nelson EA, Sharma SV, Settleman J, Frank DA. A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget. 2011;2(6):518–24.PubMedGoogle Scholar
  65. 65.
    Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB, et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood. 2011;117(12):3421–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Guy’s and St Thomas’ NHS Foundation TrustGuy’s HospitalLondonUK
  2. 2.Department of Haematology, University College London Hospitals NHS Foundation TrustUniversity College London HospitalLondonUK

Personalised recommendations