Skip to main content
Log in

Are MPNs Vascular Diseases?

  • Myeloproliferative Disorders (JJ Kiladjian, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

A high risk of arterial and venous thrombosis is the hallmark of chronic myeloproliferative neoplasms (MPNs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Clinical aspects, pathogenesis and management of thrombosis in MPN resemble those of other paradigmatic vascular diseases. The occurrence of venous thrombosis in atypical sites, such as the splanchnic district, and the involvement of plasmatic prothrombotic factors, including an acquired resistance to activated protein C, both link MPN to inherited thrombophilia. Anticoagulants are the drugs of choice for these complications. The pathogenic role of leukocytes and inflammation, and the high mortality rate from arterial occlusions are common features of MPN and atherosclerosis. The efficacy and safety of aspirin in reducing deaths and major thrombosis in PV have been demonstrated in a randomized clinical trial. Finally, the Virchow’s triad of impaired blood cells, endothelium and blood flow is shared both by MPN and thrombosis in solid cancer. Phlebotomy and myelosuppressive agents are the current therapeutic options for correcting these abnormalities and reducing thrombosis in this special vascular disease represented by MPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011;29(5):573–82.

    Article  PubMed  CAS  Google Scholar 

  2. Cross NC. Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program. 2011;208–14.

  3. De Stefano V, Finazzi G, Mannucci PM. Inherited thrombophilia: pathogenesis, clinical syndromes, and management. Blood. 1996;87:3531–44.

    PubMed  Google Scholar 

  4. De Stefano V, Rossi E, Paciaroni K, Leone G. Screening for inherited thrombophilia: indications and therapeutic implications. Haematologica. 2002;87:1095–108.

    PubMed  Google Scholar 

  5. Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis. 2002;13:657–70.

    Article  PubMed  CAS  Google Scholar 

  6. Bertina RM. The role of procoagulants and anticoagulants in the development of venous thromboembolism. Thromb Res. 2009;123 Suppl 4:S41–5.

    Article  PubMed  CAS  Google Scholar 

  7. Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet. 1999;353:1167–73.

    Article  PubMed  CAS  Google Scholar 

  8. Rossi E, Ciminello A, Za T, Betti S, Leone G, De Stefano V. In families with inherited thrombophilia the risk of venous thromboembolism is dependent on the clinical phenotype of the proband. Thromb Haemost. 2011;106:646–54.

    Article  PubMed  CAS  Google Scholar 

  9. Sanson BJ, Simioni P, Tormene D, Moia M, Friederich PW, Huisman MV, et al. The incidence of venous thromboembolism in asymptomatic carriers of a deficiency of antithrombin, protein C, or protein S: a prospective cohort study. Blood. 1999;94:3702–6.

    PubMed  CAS  Google Scholar 

  10. Mahmoodi BK, Brouwer JL, Ten Kate MK, Lijfering WM, Veeger NJ, Mulder AB. A prospective cohort study on the absolute risks of venous thromboembolism and predictive value of screening asymptomatic relatives of patients with hereditary deficiencies of protein S, protein C or antithrombin. J Thromb Haemost. 2010;8:1193–200.

    Article  PubMed  CAS  Google Scholar 

  11. Simioni P, Tormene D, Prandoni P, Zerbinati P, Gavasso S, Cefalo P, et al. Incidence of venous thromboembolism in asymptomatic family members who are carriers of factor V Leiden: a prospective cohort study. Blood. 2002;99:1938–42.

    Article  PubMed  CAS  Google Scholar 

  12. Coppens M, van de Poel MH, Bank I, Hamulyak K, van der Meer J, Veeger NJ, et al. A prospective cohort study on the absolute incidence of venous thromboembolism and arterial cardiovascular disease in asymptomatic carriers of the prothrombin 20210A mutation. Blood. 2006;108:2604–7.

    Article  PubMed  CAS  Google Scholar 

  13. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32.

    Article  PubMed  Google Scholar 

  14. Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005;353(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  15. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared to hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8.

    Article  PubMed  CAS  Google Scholar 

  16. Barbui T, Carobbio A, Cervantes F, et al. Thrombosis in primary myelofibrosis: incidence and risk factors. Blood. 2010;115(4):778–82.

    Article  PubMed  CAS  Google Scholar 

  17. Gangat N, Wolanskyj AP, Tefferi A. Abdominal vein thrombosis in essential thrombocythemia: prevalence, clinical correlates, and prognostic implications. Eur J Haematol. 2006;77:327–33.

    Article  PubMed  Google Scholar 

  18. De Stefano V, Fiorini A, Rossi E, Za T, Farina G, Chiusolo P, et al. Incidence of the JAK2 V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders. J Thromb Haemost. 2007;5:708–14.

    Article  PubMed  Google Scholar 

  19. • Smalberg JH, Arends LR, Valla DC, Kiladjian JJ, Janssen HL, Leebeek FW. Myeloproliferative neoplasms in Budd-Chiari syndrome and portal vein thrombosis: a meta-analysis. Blood. 2012;120(25):4921–8. A recent and comprehensive meta-analysis of the important clinical association of MPN with splanchnic vein thrombosis (SVT), validating routine inclusion of JAK2V617F testing in the diagnostic workup of SVT patients.

    Article  PubMed  CAS  Google Scholar 

  20. Kiladjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S, et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood. 2008;111:4922–9.

    Article  PubMed  CAS  Google Scholar 

  21. Primignani M, Barosi G, Bergamaschi G, Gianelli U, Fabris F, Reati R, et al. Role of the JAK2 mutation in the diagnosis of chronic myeloproliferative disorders in splanchnic vein thrombosis. Hepatology. 2006;44:1528–34.

    Article  PubMed  CAS  Google Scholar 

  22. Martinelli I, De Stefano V. Rare thromboses of cerebral, splanchnic and upper-extremity veins. A narrative review. Thromb Haemost. 2010;103:1136–44.

    Article  PubMed  CAS  Google Scholar 

  23. Dentali F, Galli M, Gianni M, et al. Inherited thrombophilic abnormalities and risk of portal vein thrombosis. A meta-analysis. Thromb Haemost. 2008;99:675–82.

    PubMed  CAS  Google Scholar 

  24. Marchetti M, Falanga A. Leukocytosis, JAK2V617F mutation, and hemostasis in myeloproliferative disorders. Pathophysiol Haemost Thromb. 2008;36(3–4):148–59.

    PubMed  Google Scholar 

  25. Marchetti M, Castoldi E, Spronk HM, et al. Thrombin generation and activated protein C resistance in patients with essential thrombocythemia and polycythemia vera. Blood. 2008;112(10):4061–8.

    Article  PubMed  CAS  Google Scholar 

  26. Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC, et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol. 2009;84(2):102–8.

    Article  PubMed  CAS  Google Scholar 

  27. Brinkman HJ, Mertens K, van Mourik JA. Proteolytic cleavage of protein S during the hemostatic response. J Thromb Haemost. 2005;3(12):2712–20.

    Article  PubMed  CAS  Google Scholar 

  28. Dienava-Verdoold I, Marchetti MR, te Boome LC, et al. Platelet-mediated proteolytic down regulation of the anticoagulant activity of protein S in individuals with haematological malignancies. Thromb Haemost. 2012;107(3):468–76.

    Article  PubMed  Google Scholar 

  29. Robertson B, Urquhart C, Ford I, et al. Platelet and coagulation activation markers in myeloproliferative diseases: relationships with JAK2 V6I7 F status, clonality, and antiphospholipid antibodies. J Thromb Haemost. 2007;5(8):1679–85.

    Article  PubMed  CAS  Google Scholar 

  30. Alvarez-Larrán A, Arellano-Rodrigo E, Reverter JC, et al. Increased platelet, leukocyte, and coagulation activation in primary myelofibrosis. Ann Hematol. 2008;87(4):269–76.

    Article  PubMed  Google Scholar 

  31. Rosti V, Villani L, Riboni R, et al. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood. 2013;121(2):360–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood. 2009;113(21):5246–9.

    Article  PubMed  CAS  Google Scholar 

  33. Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117(22):5857–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124(4):409–17.

    Article  PubMed  CAS  Google Scholar 

  35. Ruggeri M, Gisslinger H, Tosetto A, et al. Factor V Leiden mutation carriership and venous thromboembolism in polycythemia vera and essential thrombocythemia. Am J Hematol. 2002;71(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  36. Gisslinger H, Müllner M, Pabinger I, et al. Mutation of the prothrombin gene and thrombotic events in patients with polycythemia vera or essential thrombocythemia: a cohort study. Haematologica. 2005;90(3):408–10.

    PubMed  CAS  Google Scholar 

  37. De Stefano V, Za T, Rossi E, et al. Influence of the JAK2 V617F mutation and inherited thrombophilia on the thrombotic risk among patients with essential thrombocythemia. Haematologica. 2009;94(5):733–7.

    Article  PubMed  Google Scholar 

  38. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, et al. Antithrombotic Therapy for VTE Disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2_suppl):e419S–94S.

    Article  PubMed  CAS  Google Scholar 

  39. De Stefano V, Za T, Rossi E, et al. Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: incidence, risk factors, and effect of treatments. Haematologica. 2008;93(3):372–80.

    Article  PubMed  Google Scholar 

  40. Condat B, Pessione F, Hillaire S, et al. Current outcome of portal vein thrombosis in adults: risk and benefit of anticoagulant therapy. Gastroenterology. 2001;120:490–7.

    Article  PubMed  CAS  Google Scholar 

  41. Narayanan Menon KV, Shah V, Kamath PS. The Budd-Chiari syndrome. N Engl J Med. 2004;350:578–85.

    Article  Google Scholar 

  42. •• Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European Leukemia. Net J Clin Oncol. 2011;29:761–70. Updated management recommendations for MPN patients provided by an expert consensus panel.

    Article  Google Scholar 

  43. Libby P, Ridke PM, Maseri A. Inflamm Atheroscler Circ. 2002;105:1135–43.

    CAS  Google Scholar 

  44. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17:1410–22.

    Article  PubMed  CAS  Google Scholar 

  45. Falanga A, Marchetti M, Barbui T, Smith CW. Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the role of neutrophils. Semin Hematol. 2005;42(4):239–47.

    Article  PubMed  CAS  Google Scholar 

  46. Afshar-Kharghan V, Thiagarajan P. Leukocyte adhesion and thrombosis. Curr Opin Hematol. 2006;13(1):34–9.

    Article  PubMed  CAS  Google Scholar 

  47. Landolfi R, Di Gennaro L, Falanga A. Thrombosis in myeloproliferative disorders: pathogenetic facts and speculation. Leukemia. 2008;22:2020–8.

    Article  PubMed  CAS  Google Scholar 

  48. Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T. Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol. 2005;33(5):523–30.

    Article  PubMed  CAS  Google Scholar 

  49. Barbui T, Carobbio A, Finazzi G, et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica. 2011;96(2):315–8.

    Article  PubMed  CAS  Google Scholar 

  50. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63.

    PubMed  CAS  Google Scholar 

  51. Landolfi R, Di Gennaro L, Barbui T, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109(6):2446–52.

    Article  PubMed  CAS  Google Scholar 

  52. Wolanskyj AP, Schwager SM, McClure RF, Larson DR, Tefferi A. Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc. 2006;81(2):159–66.

    Article  PubMed  Google Scholar 

  53. Carobbio A, Antonioli E, Guglielmelli P, Vannucchi AM, Delaini F, Guerini V, et al. Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol. 2008;26(16):2732–6.

    Article  PubMed  CAS  Google Scholar 

  54. Palandri F, Polverelli N, Catani L, Ottaviani E, Baccarani M, Vianelli N. Impact of leukocytosis on thrombotic risk and survival in 532 patients with essential thrombocythemia: a retrospective study. Ann Hematol. 2011;90(8):933–8.

    Article  PubMed  Google Scholar 

  55. Passamonti F, Rumi E, Pascutto C, Cazzola M, Lazzarino M. Increase in leukocyte count over time predicts thrombosis in patients with low-risk essential thrombocythemia. J Thromb Haemost. 2009;7(9):1587–9.

    Article  PubMed  CAS  Google Scholar 

  56. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.

    Article  PubMed  CAS  Google Scholar 

  57. Alvarez-Larrán A, Cervantes F, Pereira A, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010;116(8):1205–10.

    Article  PubMed  Google Scholar 

  58. Pascale S, Petrucci G, Dragani A, et al. Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target. Blood. 2012;119(15):3595–603.

    Article  PubMed  CAS  Google Scholar 

  59. Tefferi A, Barbui T. Personalized management of essential thrombocythemia-application of recent evidence to clinical practice. Leukemia. 2013. doi:10.1038/leu.2013.99 [Epub ahead of print].

    Google Scholar 

  60. Hasselbalch HC, Riley CH. Statins in the treatment of polycythaemia vera and allied disorders: an antithrombotic and cytoreductive potential? Leuk Res. 2006;30:1217–25.

    Article  PubMed  CAS  Google Scholar 

  61. Griner LN, McGraw KL, Johnson JO, List AF, Reuther GW. JAK2-V617F-mediated signalling is dependent on lipid rafts and statins inhibit JAK2-V617F-dependent cell growth. Br J Haematol. 2013;160:177–87.

    Article  PubMed  CAS  Google Scholar 

  62. Trousseau A. Phlegmasia alba dolens. Clin Med Hotel Dieu Paris. 1865;3:654–712.

    Google Scholar 

  63. Falanga A, Russo L, Verzeroli C. Mechanisms of thrombosis in cancer. Thromb Res. 2013;131 Suppl 1:S59–62.

    Article  PubMed  CAS  Google Scholar 

  64. Lip GYH, Chin BSP, Blann AD. Cancer and the prothrombotic state. Lancet Oncol. 2002;3:27–34.

    Article  PubMed  CAS  Google Scholar 

  65. Prandoni P. Antithrombotic strategies in patients with cancer. Thromb Haemost. 1997;78:141–4.

    PubMed  CAS  Google Scholar 

  66. Virchow R. Gesammalte Abhandlungen zur Wissenschaftlichen Medtzin. Frankfurt: Medinger Sohn; 1856.

    Google Scholar 

  67. Adams BD, Baker R, Lopez JA, Spencer S. Myeloproliferative disorders and the hyperviscosity syndrome. Hematol Oncol Clin North Am. 2010;24(3):585–602.

    Article  PubMed  Google Scholar 

  68. Turitto VT, Weiss HJ. Red blood cells: their dual role in thrombus formation. Science. 1980;207(4430):541–3.

    Article  PubMed  CAS  Google Scholar 

  69. De Grandis M et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood. 2013;121(4):658–65.

    Article  PubMed  Google Scholar 

  70. Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC, Villamor N, Colomer D, Cervantes F. Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica. 2006;91(2):169–75.

    PubMed  CAS  Google Scholar 

  71. Falanga A, Marchetti M, Vignoli A, et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol. 2007;35(5):702–11.

    Article  PubMed  CAS  Google Scholar 

  72. Maugeri N, Malato S, Femia EA, et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood. 2011;118(12):3359–66.

    Article  PubMed  CAS  Google Scholar 

  73. Jensen MK, de Nully BP, Lund BV, Nielsen OJ, Hasselbalch HC. Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders. Br J Haematol. 2000;110(1):116–24.

    Article  PubMed  CAS  Google Scholar 

  74. Panova-Noeva M, Marchetti M, Spronk HM, et al. Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera. Am J Hematol. 2011;86(4):337–42.

    Article  PubMed  Google Scholar 

  75. Treliński J, Wierzbowska A, Krawczyńska A, et al. Plasma levels of angiogenic factors and circulating endothelial cells in essential thrombocythemia: correlation with cytoreductive therapy and JAK2-V617F mutational status. Leuk Lymphoma. 2010;51(9):1727–33.

    PubMed  Google Scholar 

  76. Belotti A, Elli E, Speranza T, Lanzi E, Pioltelli P, Pogliani E. Circulating endothelial cells and endothelial activation in essential thrombocythemia: results from CD146+ immunomagnetic enrichment–flow cytometry and soluble E-selectin detection. Am J Hematol. 2012;87(3):319–20.

    Article  PubMed  CAS  Google Scholar 

  77. Alonci A, Allegra A, Bellomo G, et al. Evaluation of circulating endothelial cells, VEGF and VEGFR2 serum levels in patients with chronic myeloproliferative diseases. Hematol Oncol. 2008;26(4):235–9.

    Article  PubMed  CAS  Google Scholar 

  78. Friedenberg WR, Roberts RC, David DE. Relationship of thrombohemorrhagic complications to endothelial cell function in patients with chronic myeloproliferative disorders. Am J Hematol. 1992;40(4):283–9.

    Article  PubMed  CAS  Google Scholar 

  79. Cella G, Marchetti M, Vianello F, et al. Nitric oxide derivatives and soluble plasma selectins in patients with myeloproliferative neoplasms. Thromb Haemost. 2010;104(1):151–6.

    Article  PubMed  CAS  Google Scholar 

  80. •• Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368(1):22–33. The most recent randomized clinical trial on patients with polycythemia vera demonstrating the clinical benefit of a strict control of hematocrit.

    Article  PubMed  CAS  Google Scholar 

  81. Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995;332(17):1132–6.

    Article  PubMed  CAS  Google Scholar 

  82. Maugeri N, Giordano G, Petrilli MP, et al. Inhibition of tissue factor expression by hydroxyurea in polymorphonuclear leukocytes from patients with myeloproliferative disorders: a new effect for an old drug? J Thromb Haemost. 2006;4(12):2593–8.

    Article  PubMed  CAS  Google Scholar 

  83. Finazzi G, Ruggeri M, Rodeghiero F, Barbui T. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: long-term follow-up of a randomized clinical trial. Br J Haematol. 2000;110(3):577–83.

    Article  PubMed  CAS  Google Scholar 

  84. • Björkholm M, Derolf AR, Hultcrantz M, et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29(17):2410–5. A convincing demonstration of the negligible, if any, leukemogenic risk of hydoxyurea in the treatment of MPN.

    Article  PubMed  Google Scholar 

  85. Finazzi G, Caruso V, Marchioli R, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664–70.

    Article  PubMed  CAS  Google Scholar 

  86. Silver RT, Kiladjian JJ, Hasselbalch HC. Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Rev Hematol. 2013;6(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  87. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72.

    Article  PubMed  CAS  Google Scholar 

  88. Quintás-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24.

    Article  PubMed  Google Scholar 

  89. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807.

    Article  PubMed  CAS  Google Scholar 

  90. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Barbui and Dr. Finazzi are supported by a grant from Associazione Italiana per la Ricerca sul Cancro (AIRC, Milano) “Special Program Molecular Clinical Oncology 5x1000” to AGIMM (AIRC287 Gruppo Italiano Malattie Mieloproliferative) (project #1005).

Compliance with Ethics Guidelines

Conflict of Interest

Guido Finazzi declares that he has no conflict of interest.

Valerio De Stefano has received research support from Shire, and payment for the development of educational presentations including service on speakers bureaus from Shire and Novartis.

Tiziano Barbui has received honoraria from Novartis for serving on an advisory board.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Finazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finazzi, G., De Stefano, V. & Barbui, T. Are MPNs Vascular Diseases?. Curr Hematol Malig Rep 8, 307–316 (2013). https://doi.org/10.1007/s11899-013-0176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0176-z

Keywords

Navigation