Current Hematologic Malignancy Reports

, Volume 5, Issue 2, pp 109–117 | Cite as

The Role of Molecular Tests in Acute Myelogenous Leukemia Treatment Decisions

Article

Abstract

The prognosis for patients with acute myelogenous leukemia (AML) is dependent on age, karyotype, and the genetics of the neoplastic cell. The molecular markers with prognostic impact include mutations in FLT3, NPM1, MLL, WT1, c-KIT, and expression levels of BAALC, NM1, ERG, and CXCR4. Gene expression profiles and microRNA expression patterns in AML may prove highly useful in defining the prognosis of AML. Cytogenetic and, increasingly, molecular findings are used in determining the best therapy for AML patients, especially the choice of whether to perform allogeneic stem cell transplantation.

Keywords

Acute myeloid leukemia Genetics Prognosis FLT3 NPM1 

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. 1.
    Jemal A, Siegel R, Ward E, et al.: Cancer statistics, 2008. CA Cancer J Clin 2008, 58(2):71–96.CrossRefPubMedGoogle Scholar
  2. 2.
    • Tallman MS, Gilliland DG, and Rowe JM: Drug therapy for acute myeloid leukemia. [Erratum appears in Blood 2005, 106(7):2243.] Blood 2005, 106(4):1154–1163.CrossRefPubMedGoogle Scholar
  3. 3.
    • Mrozek K, Marcucci G, Paschka P, et al.: Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: Are we ready for a prognostically prioritized molecular classification? Blood 2007, 109(2):431–448. This article is a detailed review of the prognostic impact of gene mutations in AML.CrossRefPubMedGoogle Scholar
  4. 4.
    Mrozek K, Heerema NA, Bloomfield CD: Cytogenetics in acute leukemia. Blood Rev 2004, 18(2):115–136.CrossRefPubMedGoogle Scholar
  5. 5.
    •• Schlenk RF, Dohner K, Krauter J, et al.: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008, 358(18):1909–1918. This article is a meta-analysis of four prospective clinical trials describing the prognostic impact of gene mutations in AML. The analysis showed that allogeneic SCT may offer a survival advantage to AML patients, except for those with NPM1 mutation in the setting of FLT3 wild-type status.CrossRefPubMedGoogle Scholar
  6. 6.
    Abu-Duhier FM, Goodeve AC, Wilson GA, et al.: Identification of novel FLT–3 Asp835 mutations in adult acute myeloid leukaemia. Br J Haematol 2001, 113(4):983–988.CrossRefPubMedGoogle Scholar
  7. 7.
    Reindl C, Bagrintseva K, Vempati S, et al.: Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006, 107(9):3700–3707.CrossRefPubMedGoogle Scholar
  8. 8.
    Frohling S, Scholl C, Levine RL, et al.: Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007, 12(6):501–513.CrossRefPubMedGoogle Scholar
  9. 9.
    Kottaridis PD, Gale RE, Frew ME, et al.: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001, 98(6):1752–1759.CrossRefPubMedGoogle Scholar
  10. 10.
    Bienz M, Ludwig M, Leibundgut EO, et al.: Risk assessment in patients with acute myeloid leukemia and a normal karyotype. [Erratum appears in Clin Cancer Res 2005, 11(15):5659.] Clin Cancer Res 2005, 11(4):1416-1424.CrossRefPubMedGoogle Scholar
  11. 11.
    Hayakawa F, Towatari M, Kiyoi H, et al.: Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000, 19(5):624–631.CrossRefPubMedGoogle Scholar
  12. 12.
    Whitman SP, Archer KJ, Feng L, et al.: Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res 2001, 61(19):7233–7239.PubMedGoogle Scholar
  13. 13.
    Thiede C, Steudel C, Mohr B, et al.: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002, 99(12):4326–4335.CrossRefPubMedGoogle Scholar
  14. 14.
    Meshinchi S, Alonzo TA, Stirewalt DL, et al.: Clinical implications of FLT3 mutations in pediatric AML. Blood 2006, 108(12):3654–3661.CrossRefPubMedGoogle Scholar
  15. 15.
    • Gale RE, Green C, Allen C, et al.: The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008, 111(5):2776–2784. This article describes the prognostic impact of NPM1 mutations, FLT3-ITD mutant levels, and ITD size.CrossRefPubMedGoogle Scholar
  16. 16.
    Kayser S, Schlenk RF, Londono MC, et al.: Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 2009, 114(12):2386–2392.CrossRefPubMedGoogle Scholar
  17. 17.
    Breitenbuecher F, Schnittger S, Grundler R, et al.: Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood 2009, 113(17):4074–4077.CrossRefPubMedGoogle Scholar
  18. 18.
    Stirewalt DL, Kopecky KJ, Meshinchi S, et al.: Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006, 107(9):3724–3726.CrossRefPubMedGoogle Scholar
  19. 19.
    Meshinchi S, Stirewalt DL, Alonzo TA, et al.: Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 2008, 111(10):4930–4933.CrossRefPubMedGoogle Scholar
  20. 20.
    Ponziani V, Gianfaldoni G, Mannelli F, et al.: The size of duplication does not add to the prognostic significance of FLT3 internal tandem duplication in acute myeloid leukemia patients. Leukemia 2006, 20(11):2074–2076.CrossRefPubMedGoogle Scholar
  21. 21.
    Ozeki K, Kiyoi H, Hirose Y, et al.: Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004, 103(5):1901–1908.CrossRefPubMedGoogle Scholar
  22. 22.
    Bullinger L, Dohner K, Bair E, et al.: Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004, 350(16):1605–1616.CrossRefPubMedGoogle Scholar
  23. 23.
    • Whitman SP, Ruppert AS, Radmacher MD, et al.: FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood 2008, 111(3):1552–1559. This study describes a negative prognostic impact of FLT3-TKD mutation in AML, in contrast to the findings of Mead et al. [24•].CrossRefPubMedGoogle Scholar
  24. 24.
    • Mead AJ, Linch DC, Hills RK, et al.: FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood 2007, 110(4):1262–1270. This article describes FLT3-TKD mutations and their favorable prognosis in AML, in contrast to the findings of Whitman et al. [23•].CrossRefPubMedGoogle Scholar
  25. 25.
    Thiede C, Koch S, Creutzig E, et al.: Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006, 107(10):4011–4020.CrossRefPubMedGoogle Scholar
  26. 26.
    Falini B, Nicoletti I, Bolli N, et al.: Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 2007, 92(4):519–532.CrossRefPubMedGoogle Scholar
  27. 27.
    Falini B, Nicoletti I, Martelli MF, et al.: Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007, 109(3):874–885.CrossRefPubMedGoogle Scholar
  28. 28.
    • Marcucci G, Maharry K, Radmacher MD, et al.: Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 2008, 26(31):5078–5087. This article describes prognostic impact of CEBPα mutations in AML.CrossRefPubMedGoogle Scholar
  29. 29.
    Baldus CD, Tanner SM, Ruppert AS, et al.: BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: a Cancer and Leukemia Group B Study. Blood 2003, 102(5):1613–1618.CrossRefPubMedGoogle Scholar
  30. 30.
    Marcucci G, Baldus CD, Ruppert AS, et al.: Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 2005, 23(36):9234–9242.CrossRefPubMedGoogle Scholar
  31. 31.
    • Marcucci G, Maharry K, Whitman SP, et al.: High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007, 25(22):3337–3343. This study describes the negative prognostic impact of ERG overexpression in AML.CrossRefPubMedGoogle Scholar
  32. 32.
    Langer C, Marcucci G, Holland KB, et al.: Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2009, 27(19):3198–3204.CrossRefPubMedGoogle Scholar
  33. 33.
    Heuser M, Beutel G, Krauter J, et al.: High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006, 108(12):3898–3905.CrossRefPubMedGoogle Scholar
  34. 34.
    Metzeler KH, Dufour A, Benthaus T, et al.: ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 2009, 27(30):5031–5038.CrossRefPubMedGoogle Scholar
  35. 35.
    Mills K: Gene expression profiling for the diagnosis and prognosis of acute myeloid leukaemia. Front Biosci 2008, 13:4605–4616.CrossRefPubMedGoogle Scholar
  36. 36.
    Whitman SP, Liu S, Vukosavljevic T, et al.: The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 2005, 106(1):345–352.CrossRefPubMedGoogle Scholar
  37. 37.
    Young A, Lyons J, Miller AL, et al.: Ras signaling and therapies. Adv Cancer Res 2009, 102:1–17.CrossRefPubMedGoogle Scholar
  38. 38.
    • Neubauer A, Maharry K, Mrozek K, et al.: Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: a Cancer and Leukemia Group B study. J Clin Oncol 2008, 26(28):4603–4609. This study shows an improved prognosis of AML patients with Ras mutations receiving high-dose cytarabine in consolidation, when compared with lower-dose cytarabine or patients with wild-type Ras AML.CrossRefPubMedGoogle Scholar
  39. 39.
    Advani AS, Rodriguez C, Jin T, et al.: Increased C-kit intensity is a poor prognostic factor for progression-free and overall survival in patients with newly diagnosed AML. Leuk Res 2008, 32(6):913–918.CrossRefPubMedGoogle Scholar
  40. 40.
    Cairoli R, Beghini A, Grillo G, et al.: Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006, 107(9):3463–3468.CrossRefPubMedGoogle Scholar
  41. 41.
    Boissel N, Leroy H, Brethon B, et al.: Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 2006, 20(6):965–970.CrossRefPubMedGoogle Scholar
  42. 42.
    • Paschka P, Marcucci G, Ruppert AS, et al.: Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2008, 26(28):4595–4602. This study describes the negative prognostic impact of WT1 mutations in AML.CrossRefPubMedGoogle Scholar
  43. 43.
    Gaidzik VI, Schlenk RF, Moschny S, et al.: Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 2009, 113(19):4505–4511.CrossRefPubMedGoogle Scholar
  44. 44.
    • Tavernier-Tardy E, Cornillon J, Campos L, et al.: Prognostic value of CXCR4 and FAK expression in acute myelogenous leukemia. Leuk Res 2009, 33(6):764–768. This article shows the negative prognostic effect of CXCR4 overexpression in AML.CrossRefPubMedGoogle Scholar
  45. 45.
    Burger JA, Spoo A, Dwenger A, et al.: CXCR4 chemokine receptors (CD184) and α4β1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br J Haematol 2003, 122(4):579–589.CrossRefPubMedGoogle Scholar
  46. 46.
    Zeng Z, Shi YX, Samudio IJ, et al.: Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009, 113(24):6215–6224.CrossRefPubMedGoogle Scholar
  47. 47.
    Garzon R, Garofalo M, Martelli MP, et al.: Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 2008, 105(10):3945–3950.CrossRefPubMedGoogle Scholar
  48. 48.
    Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al.: MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008, 111(10):5078–5085.CrossRefPubMedGoogle Scholar
  49. 49.
    Garzon R, Volinia S, Liu CG, et al.: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008, 111(6):3183–3189.CrossRefPubMedGoogle Scholar
  50. 50.
    Bullinger L, Dohner K, Kranz R, et al.: An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML. Blood 2008, 111(9):4490–4495.CrossRefPubMedGoogle Scholar
  51. 51.
    Mrozek K, Radmacher MD, Bloomfield CD, et al.: Molecular signatures in acute myeloid leukemia. Curr Opin Hematol 2009, 16(2):64–69.CrossRefPubMedGoogle Scholar
  52. 52.
    Gale RE, Hills R, Kottaridis PD, et al.: No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute promyelocytic leukemia, from the UK MRC AML10 and 12 trials. Blood 2005, 106(10):3658–3665.CrossRefPubMedGoogle Scholar
  53. 53.
    Stone RM, DeAngelo DJ, Klimek V, et al.: Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005, 105(1):54–60.CrossRefPubMedGoogle Scholar
  54. 54.
    Verstovsek S, Tefferi A, Cortes J, et al.: Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res 2008, 14(12):3906–3915.CrossRefPubMedGoogle Scholar
  55. 55.
    Metzelder S, Wang Y, Wollmer E, et al.: Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009, 113(26):6567–6571.CrossRefPubMedGoogle Scholar
  56. 56.
    The US National Institutes of Health. Available at http://www.clinicaltrials.gov. Accessed January 2010.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dana-Farber Cancer InstituteBostonUSA

Personalised recommendations