Skip to main content

Advertisement

Log in

Treatment of pediatric acute lymphoblastic leukemia: Progress achieved and challenges remaining

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Careful building upon past clinical trials and thoughtful application of our limited knowledge of pharmacology have provided steady improvement in outcome for newly diagnosed patients. Precise identification of the many patients who are unlikely to relapse with current effective regimens is required to avoid the morbidity of further intensification of therapy. Progress is sorely lacking for relapsed patients. Most patients who relapse die. Gene expression arrays and comparative genomic hybridization have further extended our appreciation of the known immunophenotypic and genetic diversity of childhood ALL. Insight into the molecular mechanisms of treatment failure may provide guidance for future efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gaynon PS, Trigg ME, Heerema NA, et al.: Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia 2000, 14:2223–2233.

    Article  PubMed  CAS  Google Scholar 

  2. Pui CH, Boyett JM, Rivera GK, et al.: Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia 2000, 14:2286–2294.

    Article  PubMed  CAS  Google Scholar 

  3. Schrappe M, Reiter A, Zimmermann M, et al.: Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Münster. Leukemia 2000, 14:2205–2222.

    Article  PubMed  CAS  Google Scholar 

  4. Silverman LB, Declerck L, Gelber RD, et al.: Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia 2000, 14:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  5. Jemal A, Murray T, Ward E, et al.: Cancer statistics, 2005. CA Cancer J Clin 2005, 55:10–30.

    PubMed  Google Scholar 

  6. Chessells JM, Veys P, Kempski H, et al.: Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br J Haematol 2003, 123:396–405.

    Article  PubMed  Google Scholar 

  7. Nguyen K, Cheng SC, Raetz E, et al.: Factors influencing survival after relapse from childhood ALL: a Children’s Oncology Group study [abstract]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 1855.

    Google Scholar 

  8. Barredo JC, Devidas M, Lauer SJ, et al.: Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: a Pediatric Oncology Group study. J Clin Oncol 2006, 24:3142–3149.

    Article  PubMed  CAS  Google Scholar 

  9. Schultz KR, Pullen DJ, Sather HN, et al.: Risk-and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 2007, 109:926–935.

    Article  PubMed  CAS  Google Scholar 

  10. Cave H, van der Werff ten Bosch J, Suciu S, et al.: Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med 1998, 339:591–598.

    Article  PubMed  CAS  Google Scholar 

  11. van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al.: Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998, 352:1731–1738.

    Article  PubMed  Google Scholar 

  12. Donadieu J, Auclerc MF, Baruchel A, et al.: Critical study of prognostic factors in childhood acute lymphoblastic leukaemia: differences in outcome are poorly explained by the most significant prognostic variables. Fralle group. French Acute Lymphoblastic Leukaemia study group. Br J Haematol 1998, 102:729–739.

    Article  PubMed  CAS  Google Scholar 

  13. Pinkel D: The ninth annual David Karnofsky Lecture. Treatment of acute lymphocytic leukemia. Cancer 1979, 43:1128–1137.

    Article  PubMed  CAS  Google Scholar 

  14. Simone J: Childhood leukemia as a model for cancer research: the Richard and Hilda Rosenthal Foundation Award Lecture. Cancer 1979, 39:4301–4307.

    CAS  Google Scholar 

  15. Balis FM, Lester CM, Chrousos GP, et al.: Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol 1987, 5:202–207.

    PubMed  CAS  Google Scholar 

  16. Bostrom BC, Sensel MR, Sather HN, et al.: Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 2003, 101:3809–3817.

    Article  PubMed  CAS  Google Scholar 

  17. Smith M, Arthur D, Camitta B, et al.: Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 1996, 14:18–24.

    PubMed  CAS  Google Scholar 

  18. Hurwitz CA, Silverman LB, Schorin MA, et al.: Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000, 88:1964–1969.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell CD, Richards SM, Kinsey SE, et al.: Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol 2005, 129:734–745.

    Article  PubMed  CAS  Google Scholar 

  20. Roy A, Bradburn M, Moorman AV, et al.: Early response to induction is predictive of survival in childhood Philadelphia chromosome positive acute lymphoblastic leukaemia: results of the Medical Research Council ALL 97 trial. Br J Haematol 2005, 129:35–44.

    Article  PubMed  Google Scholar 

  21. Eden OB, Lilleyman JS, Richards S, et al.: Results of Medical Research Council Childhood Leukaemia Trial UKALL VIII (report to the Medical Research Council on behalf of the Working Party on Leukaemia in Childhood). Br J Haematol 1991, 78:187–196.

    PubMed  CAS  Google Scholar 

  22. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12 000 randomised children. Childhood ALL Collaborative Group. Lancet 1996, 347:1783–1788.

  23. Eden OB, Shaw MP, Lilleyman JS, et al.: Non-randomised study comparing toxicity of Escherichia coli and Erwinia asparaginase in children with leukaemia. Med Pediatr Oncol 1990, 18:497–502.

    Article  PubMed  CAS  Google Scholar 

  24. Duval M, Suciu S, Ferster A, et al.: Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trial. Blood 2002, 99:2734–2739.

    Article  PubMed  CAS  Google Scholar 

  25. Moghrabi A, Levy DE, Asselin B, et al.: Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 2007, 109:896–904.

    Article  PubMed  CAS  Google Scholar 

  26. Hak LJ, Relling MV, Cheng C, et al.: Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia 2004, 18:1072–1077.

    Article  PubMed  CAS  Google Scholar 

  27. Nesbit ME, Robison LL, Littman PS, et al.: Presymptomatic central nervous system therapy in previously untreated childhood acute lymphoblastic leukaemia: comparison of 1800 rad and 2400 rad. A report for Children’s Cancer Study Group. Lancet 1981, 1(8218):461–466.

    Article  PubMed  Google Scholar 

  28. Schrappe M: Evolution of BFM trials for childhood ALL. Ann Hematol 2004, 83(suppl 1):S121–S123.

    PubMed  Google Scholar 

  29. Green DM, Freeman AI, Sather HN, et al.: Comparison of three methods of central-nervous-system prophylaxis in childhood acute lymphoblastic leukemia. Lancet 1980, 1(8183):1398–1402.

    Article  PubMed  CAS  Google Scholar 

  30. Bleyer WA, Coccia PF, Sather HN, et al.: Reduction in central nervous system leukemia with a pharmacokinetically derived intrathecal methotrexate dosage regimen. J Clin Oncol 1983, 1:317–325.

    PubMed  CAS  Google Scholar 

  31. Matloub Y, Lindemulder S, Gaynon PS, et al.: Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood 2006, 108:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  32. Akutsu M, Furukawa Y, Tsunoda S, et al.: Schedule-dependent synergy and antagonism between methotrexate and cytarabine against human cell lines in vitro. Leukemia 2002, 16:1808–1817.

    Article  PubMed  CAS  Google Scholar 

  33. Adamson PC, Poplack DG, Balis FM: The cytotoxicity of thioguanine vs mercaptopurine in acute lymphoblastic leukemia. Leuk Res 1994, 18:805–810.

    Article  PubMed  CAS  Google Scholar 

  34. Stork LC, Sather H, Hutchinson RJ, et al.: Comparison of mercaptopurine with thioguanine and IT methotrexate with IT “triples” in children with standard risk (SR) ALL: results of CCG-1952 [abstract]. Blood 2002, 100:36a.

    Article  Google Scholar 

  35. Vora A, Mitchell CD, Lennard L, et al.: Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 2006, 368:1339–1348.

    PubMed  CAS  Google Scholar 

  36. Stork L, Erdmann G, Adamson P, et al.: Oral 6-thioguanine causes relatively mild and reversible hepatic veno-occlusive disease [abstract]. J Pediatr Hematol Oncol 1998, 20:400 (Abstract 672).

    Article  Google Scholar 

  37. Harms DO, Gobel U, Spaar HJ, et al.: Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 2003, 102:2736–2740.

    Article  PubMed  CAS  Google Scholar 

  38. Capizzi RL: Asparaginase-methotrexate in combination chemotherapy: schedule-dependent differential effects on normal versus neoplastic cells. Cancer Treat Rep 1981, 65(suppl 4):115–121.

    PubMed  CAS  Google Scholar 

  39. Seibel NL, Steinherz PG, Sather H, et al.: Early treatment intensification improves outcome in children with acute lymphoblastic leukemia (ALL) and unfavorable features who show a rapid early response (RER) to induction chemotherapy: a report of CCG-1961 [abstract]. Blood 2003, 102:224a.

    Google Scholar 

  40. Skarby TV, Anderson H, Heldrup J, et al.: High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia 2006, 20:1955–1962.

    Article  PubMed  CAS  Google Scholar 

  41. Sterba J, Dusek L, Demlova R, et al.: Pretreatment plasma folate modulates the pharmacodynamic effect of high-dose methotrexate in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma: “folate overrescue” concept revisited. Clin Chem 2006, 52:692–700.

    Article  PubMed  CAS  Google Scholar 

  42. Wehinger H, Gutjahr P, Hofweber K, et al.: [Which is the best methotrexate schedule for maintenance therapy of childhood ALL? A randomized study] [Article in German]. Klin Padiatr 1982, 194:214–218.

    Article  PubMed  CAS  Google Scholar 

  43. Koizumi S, Fujimoto T, Takeda T, et al.: Comparison of intermittent or continuous methotrexate plus 6-mercaptopurine in regimens for standard-risk acute lymphoblastic leukemia in childhood (JCCLSG-S811). The Japanese Children’s Cancer and Leukemia Study Group. Cancer 1988, 61:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  44. Cheok MH, Evans WE: Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 2006, 6:117–129.

    Article  PubMed  CAS  Google Scholar 

  45. Relling MV, Hancock ML, Rivera GK, et al.: Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999, 91:2001–2008.

    Article  PubMed  CAS  Google Scholar 

  46. Anderer G, Schrappe M, Brechlin AM, et al.: Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000, 10:715–726.

    Article  PubMed  CAS  Google Scholar 

  47. de Jonge R, Hooijberg JH, van Zelst BD, et al.: Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005, 106:717–720.

    Article  PubMed  CAS  Google Scholar 

  48. Evans WE, Relling MV, Rodman JH, et al.: Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998, 338:499–505.

    Article  PubMed  CAS  Google Scholar 

  49. Schmiegelow K, Bjork O, Glomstein A, et al.: Intensification of mercaptopurine/methotrexate maintenance chemotherapy may increase the risk of relapse for some children with acute lymphoblastic leukemia. J Clin Oncol 2003, 21:1332–1339.

    Article  PubMed  CAS  Google Scholar 

  50. Baum E, Nachman J, Ramsay N, et al.: Prolonged second remissions in childhood acute lymphocytic leukemia: a report from the Childrens Cancer Study Group. Med Pediatr Oncol 1983, 11:1–7.

    Article  PubMed  CAS  Google Scholar 

  51. Abshire TC, Pollock BH, Billett AL, et al.: Weekly polyethylene glycol conjugated L-asparaginase compared with biweekly dosing produces superior induction remission rates in childhood relapsed acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 2000, 96:1709–1715.

    PubMed  CAS  Google Scholar 

  52. Goulden N, Langlands K, Steward C, et al.: PCR assessment of bone marrow status in “isolated” extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol 1994, 87:282–285.

    PubMed  CAS  Google Scholar 

  53. Neale GA, Pui CH, Mahmoud HH, et al.: Molecular evidence for minimal residual bone marrow disease in children with “isolated” extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia 1994, 8:768–775.

    PubMed  CAS  Google Scholar 

  54. Raetz EA, Borowitz MJ, Devidas M, et al.: Outcomes of children with first marrow relapse: results from Children’s Oncology Group (COG) study AALL01P2. Blood (ASH Annual Meeting Abstracts) 2006, 108:530a (Abstract 1871).

    Google Scholar 

  55. Gaynon PS, Harris RE, Altman AJ, et al.: Bone marrow transplantation versus prolonged intensive chemotherapy for children with acute lymphoblastic leukemia and an initial bone marrow relapse within 12 months of the completion of primary therapy: Children’s Oncology Group study CCG-1941. J Clin Oncol 2006, 24:3150–3156.

    Article  PubMed  Google Scholar 

  56. Eapen M, Raetz E, Zhang MJ, et al.: Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood 2006, 107:4961–4967.

    Article  PubMed  CAS  Google Scholar 

  57. Saarinen-Pihkala UM, Heilmann C, Winiarski J, et al.: Pathways through relapses and deaths of children with acute lymphoblastic leukemia: role of allogeneic stemcell transplantation in Nordic data. J Clin Oncol 2006, 24:5750–5762.

    Article  PubMed  Google Scholar 

  58. Harrison G, Richards S, Lawson S, et al.: Comparison of allogeneic transplant versus chemotherapy for relapsed childhood acute lymphoblastic leukaemia in the MRC UKALL R1 trial. MRC Childhood Leukaemia Working Party. Ann Oncol 2000, 11:999–1006.

    Article  PubMed  CAS  Google Scholar 

  59. Roy A, Cargill A, Love S, et al.: Outcome after first relapse in childhood acute lymphoblastic leukaemia-lessons from the United Kingdom R2 trial. Br J Haematol 2005, 130:67–75.

    Article  PubMed  Google Scholar 

  60. Eapen M, Rubinstein P, Zhang MJ, et al.: Comparable long-term survival after unrelated and HLA-matched sibling donor hematopoietic stem cell transplantations for acute leukemia in children younger than 18 months. J Clin Oncol 2006, 24:145–151.

    Article  PubMed  Google Scholar 

  61. Eckert C, Biondi A, Seeger K, et al.: Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001, 358:1239–1241.

    Article  PubMed  CAS  Google Scholar 

  62. Coustan-Smith E, Gajjar A, Hijiya N, et al.: Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004, 18:499–504.

    Article  PubMed  CAS  Google Scholar 

  63. Goulden N, Steward C: Clinical relevance of MRD in children undergoing allogeneic stem cell transplantation for ALL. Best Pract Res Clin Haematol 2002, 15:59–70.

    Article  PubMed  Google Scholar 

  64. Wu SQ, Weinberg KI, Joo WJ, et al.: Preponderant mitotic activity of nonleukemic cells plays an important role in failures to detect abnormal clone in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2003, 25:520–525.

    Article  PubMed  Google Scholar 

  65. Harrison CJ, Moorman AV, Broadfield ZJ, et al.: Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 2004, 125:552–559.

    Article  PubMed  Google Scholar 

  66. Yeoh EJ, Ross ME, Shurtleff SA, et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1:133–143.

    Article  PubMed  CAS  Google Scholar 

  67. Holleman A, den Boer ML, Cheok MH, et al.: Expression of the outcome predictor in acute leukemia 1 (OPAL1) gene is not an independent prognostic factor in patients treated according to COALL or St Jude protocols. Blood 2006, 108:1984–1990.

    Article  PubMed  CAS  Google Scholar 

  68. Mullighan CG, Goorha S, Radtke I, et al.: Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007, 446:739–740.

    Article  CAS  Google Scholar 

  69. Gaynon PS, Desai AA, Bostrom BC, et al.: Early response to therapy and outcome in childhood acute lymphoblastic leukemia: a review. Cancer 1997, 80:1717–1726.

    Article  PubMed  CAS  Google Scholar 

  70. zur Stadt U, Harms DO, Schluter S, et al.: MRD at the end of induction therapy in childhood acute lymphoblastic leukemia: Outcome prediction strongly depends on the therapeutic regimen. Leukemia 2001, 15:283–285.

    Article  PubMed  Google Scholar 

  71. Willemse MJ, Seriu T, Hettinger K, et al.: Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002, 99:4386–4393.

    Article  PubMed  CAS  Google Scholar 

  72. Borowitz MJ, Devidas M, Bowman WP, et al.: Prognostic significance of minimal residual disease (MRD) in childhood B-precursor ALL and its relation to other risk factors. A Children’s Oncology Group (COG) study [abstract]. Blood (ASH Annual Meeting Abstracts) 2006, 108:69a (Abstract 219).

    Google Scholar 

  73. Pui CH, Relling MV, Sandlund JT, et al.: Rationale and design of Total Therapy Study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol 2004, 83(suppl 1):S124–S126.

    PubMed  Google Scholar 

  74. Avramis VI, Sencer S, Periclou AP, et al.: A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 2002, 99:1986–1994.

    Article  PubMed  CAS  Google Scholar 

  75. Kwok CS, Kham SK, Ariffin H, et al.: Minimal residual disease (MRD) measurement as a tool to compare the efficacy of chemotherapeutic drug regimens using Escherichia coli-asparaginase or Erwinia-asparaginase in childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer 2006, 47:299–304.

    Article  PubMed  Google Scholar 

  76. Vora AJ, Richards S, Hancock J, et al.: Variables affecting kinetics of minimal residual disease clearance in children with lymphoblastic leukaemia; results of the United Kingdom Medical Research Council (UK MRC) Protocols ALL97, ALL97/99, and ALL2003 [abstract]. Blood 2005, 106:30a (Abstract 86).

    Google Scholar 

  77. Winick N, Borowitz MJ, Devidas M, et al.: Changes in delivery of standard chemotherapeutic agents during induction affect early measures of minimal residual disease (MRD): POG 900 for patients with B-precursor low and standard risk ALL [abstract]. Blood 2006, 108:643a (Abstract 2272).

    Google Scholar 

  78. Meshinchi S, Thomson B, Finn LS, et al.: Comparison of multidimensional flow cytometry with standard morphology for evaluation of early marrow response in pediatric acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2001, 23:585–590.

    Article  PubMed  CAS  Google Scholar 

  79. Conter V, Valsecchi MG, Silvestri D, et al.: Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet 2007, 369:123–131.

    Article  PubMed  CAS  Google Scholar 

  80. Rizzari C, Valsecchi MG, De Lorenzo P, et al.: Treatment intensification of traditional BFM therapy with 3 chemotherapy blocks and double delayed intensification (Protocol II) improves outcome in infants with high risk (HR) acute lymphoblastic leukemia (ALL): results of two consecutive AIEOP studies [abstract]. Blood 2005:256a.

  81. Biondi A, Rizzari C, Valsecchi MG, et al.: Role of treatment intensification in infants with acute lymphoblastic leukemia: results of two consecutive AIEOP studies. Haematologica 2006, 91:534–537.

    PubMed  Google Scholar 

  82. Matloub Y, Angiolillo A, Bostrom B, et al.: Double delayed intensification (DDI) is equivalent to single DI (SDI) in children with National Cancer Institute (NCI) standard-risk acute lymphoblastic leukemia (SR-ALL) treated on Children’s Cancer Group (CCG) clinical trial 1991 (CCG-1991) [abstract]. Blood 2006, 108:47a (Abstract 146).

    Article  CAS  Google Scholar 

  83. Igarashi S, Manabe A, Ohara A, et al.: No advantage of dexamethasone over prednisolone for the outcome of standard-and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s Cancer Study Group L95-14 protocol. J Clin Oncol 2005, 23:6489–6498.

    Article  PubMed  CAS  Google Scholar 

  84. Holleman A, Cheok MH, den Boer ML, et al.: Geneexpression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004, 351:533–542.

    Article  PubMed  CAS  Google Scholar 

  85. Lugthart S, Cheok MH, den Boer ML, et al.: Identification of genes associated with chemotherapy cross-resistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell 2005, 7:375–386.

    Article  PubMed  CAS  Google Scholar 

  86. Flotho C, Coustan-Smith E, Pei D, et al.: Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 2006, 108:1050–1057.

    Article  PubMed  CAS  Google Scholar 

  87. Holleman A, den Boer ML, de Menezes RX, et al.: The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood 2006, 107:769–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Gaynon MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaynon, P.S. Treatment of pediatric acute lymphoblastic leukemia: Progress achieved and challenges remaining. Curr Hematol Malig Rep 2, 193–201 (2007). https://doi.org/10.1007/s11899-007-0026-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-007-0026-y

Keywords

Navigation