Skip to main content

Advertisement

Log in

Novel insights into the development of T-cell acute lymphoblastic leukemia

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) results from malignant transformation of immature cells of the T-cell lineage. T-ALL is a heterogeneous disease both clinically and genetically. It is generally accepted that T-ALL cells are the malignant counterpart of normally developing T cells in the thymus (thymocytes). Recent data using genome-wide gene expression profiling and assessment of the rearrangement status of the T-cell receptor loci confirm this notion. T-ALL cells differ from normal thymocytes in the overexpression of oncogenes that arise either from chromosomal translocations or via other mechanisms. In addition, signaling pathways that control the very first stages of thymocyte development (of note, the Notch and Wnt pathways) are involved in development of T-ALL in mice and humans when constitutively expressed. In particular, the activating mutations in the Notch pathways are believed to occur in a large proportion of human T-ALL. These findings on genetic events open up new therapeutic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Blom B, Spits H: Development of human lymphoid cells. Annu Rev Immunol 2006, 24:287–320.

    Article  PubMed  CAS  Google Scholar 

  2. Weerkamp F, Pike-Overzet K, Staal FJ: T-sing progenitors to commit [review]. Trends Immunol 2006, 27:125–131.

    Article  PubMed  CAS  Google Scholar 

  3. Weerkamp F, van Dongen JJ, Staal FJ: Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006, 20:1197–1205.

    Article  PubMed  CAS  Google Scholar 

  4. Dik WA, Pike-Overzet K, Weerkamp F, et al.: New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005, 201:1715–1723.

    Article  PubMed  CAS  Google Scholar 

  5. Weerkamp F, de Haas EF, Naber BA, et al.: Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005, 115:834–840.

    Article  PubMed  Google Scholar 

  6. Thalhammer-Scherrer R, Mitterbauer G, Simonitsch I, et al.: The immunophenotype of 325 adult acute leukemias: relationship to morphologic and molecular classification and proposal for a minimal screening program highly predictive for lineage discrimination. Am J Clin Pathol 2002, 117:380–389.

    Article  PubMed  Google Scholar 

  7. Asnafi V, Beldjord K, Boulanger E, et al.: Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003, 101:2693–2703.

    Article  PubMed  CAS  Google Scholar 

  8. Soulier J, Clappier E, Cayuela JM, et al.: HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005, 106:274–286.

    Article  PubMed  CAS  Google Scholar 

  9. Ferrando AA, Neuberg DS, Staunton J, et al.: Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002, 1:75–87.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrando AA, Armstrong SA, Neuberg DS, et al.: Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003, 102:262–268.

    Article  PubMed  CAS  Google Scholar 

  11. Dik WA, Brahim W, Braun C, et al.: CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005, 19:1948–1957.

    Article  PubMed  CAS  Google Scholar 

  12. Pike-Overzet K, de Ridder D, Weerkamp F, et al.: Gene therapy: is IL2RG oncogenic in T-cell development? [comment]. Nature 2006, 443:E5; discussion E6–E7.

    Article  PubMed  CAS  Google Scholar 

  13. Pike-Overzet K, de Ridder D, Weerkamp F, et al.: Ectopic retroviral expression of LMO2, but not IL2Rγ, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia 2007, 21:754–763.

    PubMed  CAS  Google Scholar 

  14. Langenau DM, Feng H, Berghmans S, et al.: Cre/loxregulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2005, 102:6068–6073.

    Article  PubMed  CAS  Google Scholar 

  15. Robb L, Begley CG: The SCL/TAL1 gene: roles in normal and malignant haematopoiesis. Bioessays 1997, 19:607–613.

    Article  PubMed  CAS  Google Scholar 

  16. O’Neil J, Shank J, Cusson N, et al.: TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004, 5:587–596.

    Article  PubMed  CAS  Google Scholar 

  17. Hofmann TJ, Cole MD: The TAL1/Scl basic helix-loophelix protein blocks myogenic differentiation and E-box dependent transactivation. Oncogene 1996, 13:617–624.

    PubMed  CAS  Google Scholar 

  18. Chen J, Jette C, Kanki JP, et al.: NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 2007, 21:462–471.

    Article  PubMed  Google Scholar 

  19. Dik WA, Nadel B, Przybylski GK, et al.: Different chromosomal breakpoints impact level of LMO2 expression in T-ALL. Blood 2007, In press.

  20. Finger LR, Harvey RC, Moore RC, et al.: A common mechanism of chromosomal translocation in T-and B-cell neoplasia. Science 1986, 234:982–985.

    Article  PubMed  CAS  Google Scholar 

  21. Przybylski GK, Dik WA, Wanzeck J, et al.: Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia 2005, 19:201–208.

    Article  PubMed  CAS  Google Scholar 

  22. Grabher C, von Boehmer H, Look AT: Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006, 6:347–359.

    Article  PubMed  CAS  Google Scholar 

  23. Graux C, Cools J, Melotte C, et al.: Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004, 36:1084–1089.

    Article  PubMed  CAS  Google Scholar 

  24. Grutz GG, Bucher K, Lavenir I, et al.: The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J 1998, 17:4594–4605.

    Article  PubMed  CAS  Google Scholar 

  25. Ellisen LW, Bird J, West DC, et al.: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991, 66:649–661.

    Article  PubMed  CAS  Google Scholar 

  26. Capobianco AJ, Zagouras P, Blaumueller CM, et al.: Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 1997, 17:6265–6273.

    PubMed  CAS  Google Scholar 

  27. Wolfer A, Bakker T, Wilson A, et al.: Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nat Immunol 2001, 2:235–241.

    Article  PubMed  CAS  Google Scholar 

  28. Radtke F, Wilson A, Stark G, et al.: Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999, 10:547–558.

    Article  PubMed  CAS  Google Scholar 

  29. Radtke F, Wilson A, Mancini SJ, MacDonald HR: Notch regulation of lymphocyte development and function. Nat Immunol 2004, 5:247–253.

    Article  PubMed  CAS  Google Scholar 

  30. Weerkamp F, Luis TC, Naber BA, et al.: Identification of Notch target genes in uncommitted T-cell progenitors: no direct induction of a T-cell specific gene program. Leukemia 2006, 20:1967–1977.

    Article  PubMed  CAS  Google Scholar 

  31. Allman D, Karnell FG, Punt JA, et al.: Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med 2001, 194:99–106.

    Article  PubMed  CAS  Google Scholar 

  32. Weng AP, Ferrando AA, Lee W, et al.: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306:269–271.

    Article  PubMed  CAS  Google Scholar 

  33. Palomero T, Lim WK, Odom DT, et al.: NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 2006, 103:18261–18266.

    Article  PubMed  CAS  Google Scholar 

  34. Bellavia D, Campese AF, Checquolo S, et al.: Combined expression of pTα and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci U S A 2002, 99:3788–3793.

    Article  PubMed  CAS  Google Scholar 

  35. Talora C, Cialfi S, Oliviero C, et al.: Cross talk among Notch3, pre-TCR, and Tal1 in T-cell development and leukemogenesis. Blood 2006, 107:3313–3320.

    Article  PubMed  CAS  Google Scholar 

  36. Palomero T, McKenna K, O’Neil J, et al.: Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias. Leukemia 2006, 20:1963–1966.

    Article  PubMed  CAS  Google Scholar 

  37. Vilimas T, Mascarenhas J, Palomero T, et al.: Targeting the NF-κB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007, 13:70–77.

    Article  PubMed  CAS  Google Scholar 

  38. Staal FJ, Clevers HC: WNT signalling and haematopoiesis: a WNT-WNT situation [review]. Nat Rev Immunol 2005, 5:21–30.

    Article  PubMed  CAS  Google Scholar 

  39. Weerkamp F, Baert MR, Naber BA, et al.: Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci U S A 2006, 103:3322–3326.

    Article  PubMed  CAS  Google Scholar 

  40. Staal FJ, Meeldijk J, Moerer P, et al.: Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 2001, 31:285–293.

    Article  PubMed  CAS  Google Scholar 

  41. Staal FJ, Clevers HC: Wnt signaling in the thymus. Curr Opin Immunol 2003, 15:204–208.

    Article  PubMed  CAS  Google Scholar 

  42. Giles RH, van Es JH, Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer [review]. Biochim Biophys Acta 2003, 1653:1–24.

    PubMed  CAS  Google Scholar 

  43. Reya T, Clevers H: Wnt signalling in stem cells and cancer [review]. Nature 2005, 434:843–850.

    Article  PubMed  CAS  Google Scholar 

  44. Guo Z, Dose M, Kovalovsky D, et al.: β-Catenin stabilization stalls the transition from Double-Positive to Single Positive stage and predisposes thymocytes to malignant transformation. Blood 2007, In press.

  45. Roman-Gomez J, Cordeu L, Agirre X, et al.: Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007, 109:3462–3469.

    Article  PubMed  CAS  Google Scholar 

  46. Lewis HD, Leveridge M, Strack PR, et al.: Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 2007, 14:209–219.

    Article  PubMed  CAS  Google Scholar 

  47. Wong GT, Manfra D, Poulet FM, et al.: Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004, 279:12876–12882.

    Article  PubMed  CAS  Google Scholar 

  48. van Es JH, van Gijn ME, Riccio O, et al.: Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005, 435:959–963.

    Article  PubMed  Google Scholar 

  49. Emami KH, Nguyen C, Ma H, et al.: A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 2004, 101:12682–12687.

    Article  PubMed  CAS  Google Scholar 

  50. van Vlierberghe P, Meijerink JP, Lee C, et al.: A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia 2006, 20:1245–1253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. T. Staal PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staal, F.J.T., van Dongen, J.J.M. & Langerak, A.W. Novel insights into the development of T-cell acute lymphoblastic leukemia. Curr Hematol Malig Rep 2, 176–182 (2007). https://doi.org/10.1007/s11899-007-0024-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-007-0024-0

Keywords

Navigation