Current Hematologic Malignancy Reports

, Volume 2, Issue 2, pp 111–118 | Cite as

New approaches for the detection of minimal residual disease in acute myeloid leukemia

  • Anna van Rhenen
  • Bijan Moshaver
  • Gert J. Ossenkoppele
  • Gerrit Jan Schuurhuis
Open Access
Article

Abstract

The detection of minimal residual disease (MRD) in patients with acute leukemia has been studied for about 15 years by different groups in both the United States and Europe. It has been found that MRD detection can be performed using molecular and immunophenotypic aberrancies that are present in the leukemic clone at diagnosis and not in normal bone marrow. When performing MRD assessments after chemotherapy, it is possible to identify patients at risk for relapse. This review is not an overview of all MRD studies, but rather discusses the possibilities for optimizing MRD detection, the use of flow cytometry versus polymerase chain reaction techniques, and the implications for future patient treatment. When informative, we compare literature on MRD in acute myeloid leukemia (AML) with information from MRD studies in acute lymphoblastic leukemia. Finally, we address the promising detection of AML stem cells, the likely cells of origin in AML, for prediction of clinical outcome and guidance of future therapies.

References and Recommended Reading

  1. 1.
    Ries LAG, Harkins D, Krapcho M, et al.: SEER Cancer Statistics Review, 1975–2003. Bethesda, MD: National Cancer Institute; 2006. Available at http://seer.cancer.gov/csr/1975_2003/ Google Scholar
  2. 2.
    Lowenberg B, Griffin JD, Tallman MS: Acute myeloid leukemia and acute promyelocytic leukemia [review]. Hematology Am Soc Hematol Educ Program 2003, 82–101.Google Scholar
  3. 3.
    Legrand O, Simonin G, Perrot JY, et al.: Pgp and MRP activities using calcein-AM are prognostic factors in adult acute myeloid leukemia patients. Blood 1998, 91:4480–4488.PubMedGoogle Scholar
  4. 4.
    van der Pol MA, Feller N, Ossenkoppele GJ, et al.: Minimal residual disease in acute myeloid leukemia is predicted by P-glycoprotein activity but not by multidrug resistance protein activity at diagnosis. Leukemia 2003, 17:1674–1677.PubMedCrossRefGoogle Scholar
  5. 5.
    Del Poeta G, Venditti A, Del Principe MI, et al.: Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 2003, 101:2125–2131.PubMedCrossRefGoogle Scholar
  6. 6.
    van Stijn A, Feller N, Kok A, et al.: Minimal residual disease in acute myeloid leukemia is predicted by an apoptosis-resistant protein profile at diagnosis. Clin Cancer Res 2005, 11:2540–2546.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsunaga T, Takemoto N, Sato T, et al.: Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 2003, 9:1158–1165.PubMedCrossRefGoogle Scholar
  8. 8.
    De Toni F, Racaud-Sultan C, Chicanne G, et al.: A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 2006, 25:3113–3122.PubMedCrossRefGoogle Scholar
  9. 9.
    Kokenberg E, Sonneveld P, Sizoo W, et al.: Cellular pharmacokinetics of daunorubicin: relationships with the response to treatment in patients with acute myeloid leukemia. J Clin Oncol 1988, 6:802–812.PubMedGoogle Scholar
  10. 10.
    Gessner T, Preisler HD, Azarnia N, et al.: Plasma levels of daunorubicin metabolites and the outcome of ANLL therapy. Med Oncol Tumor Pharmacother 1987, 4:23–31.PubMedGoogle Scholar
  11. 11.
    Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997, 3:730–737.PubMedCrossRefGoogle Scholar
  12. 12.
    Costello RT, Mallet F, Gaugler B, et al.: Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 2000, 60:4403–4411.PubMedGoogle Scholar
  13. 13.
    Bacher U, Schnittger S, Kern W, et al.: Acute myeloid leukemia (AML) with t(8;21)(q22;q22) relapsing as AML with t(3;21)(q26;q22). Cancer Genet Cytogenet 2006, 168:172–174.PubMedCrossRefGoogle Scholar
  14. 14.
    van Rhenen A, Feller N, Kelder A, et al.: High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res 2005, 11:6520–6527.PubMedCrossRefGoogle Scholar
  15. 15.
    Campana D: Minimal residual disease studies in acute leukemia. Am J Clin Pathol 2004, 122(Suppl):S47–S57.PubMedGoogle Scholar
  16. 16.
    Vidriales MB, Perez JJ, Lopez-Berges MC, et al.: Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood 2003, 101:4695–4700.PubMedCrossRefGoogle Scholar
  17. 17.
    Coustan-Smith E, Sancho J, Hancock ML, et al.: Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000, 96:2691–2696.PubMedGoogle Scholar
  18. 18.
    van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al.: Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998, 352:1731–1738.PubMedCrossRefGoogle Scholar
  19. 19.
    Sievers EL, Lange BJ, Alonzo TA, et al.: Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003, 101:3398–3406.PubMedCrossRefGoogle Scholar
  20. 20.
    Coustan-Smith E, Ribeiro RC, Rubnitz JE, et al.: Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol 2003, 123:243–252.PubMedCrossRefGoogle Scholar
  21. 21.
    San Miguel JF, Vidriales MB, Lopez-Berges C, et al.: Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 2001, 98:1746–1751.PubMedCrossRefGoogle Scholar
  22. 22.
    Venditti A, Buccisano F, Del Poeta G, et al.: Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 2000, 96:3948–3952.PubMedGoogle Scholar
  23. 23.
    Feller N, van der Pol MA, van Stijn A, et al.: MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia 2004, 18:1380–1390.PubMedCrossRefGoogle Scholar
  24. 24.
    Kern W, Voskova D, Schoch C, et al.: Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004, 104:3078–3085.PubMedCrossRefGoogle Scholar
  25. 25.
    Kern W, Schoch C, Haferlach T, Schnittger S: Monitoring of minimal residual disease in acute myeloid leukemia. Crit Rev Oncol Hematol 2005, 56:283–309.PubMedGoogle Scholar
  26. 26.
    Baer MR, Stewart CC, Dodge RK, et al.: High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001, 97:3574–3580.PubMedCrossRefGoogle Scholar
  27. 27.
    Kern W, Danhauser-Riedl S, Ratei R, et al.: Detection of minimal residual disease in unselected patients with acute myeloid leukemia using multiparameter flow cytometry for definition of leukemia-associated immunophenotypes and determination of their frequencies in normal bone marrow. Haematologica 2003, 88:646–653.PubMedGoogle Scholar
  28. 28.
    Roederer M, De Rosa S, Gerstein R, et al.: 8 color, 10-parameter flow cytometry to elucidate complex leukocyte heterogeneity. Cytometry 1997, 29:328–339.PubMedCrossRefGoogle Scholar
  29. 29.
    Voskova D, Schnittger S, Schoch C, et al.: Use of five-color staining improves the sensitivity of multiparameter flow cytomeric assessment of minimal residual disease in patients with acute myeloid leukemia. Leuk Lymphoma 2007, In press.Google Scholar
  30. 30.
    Schnittger S, Weisser M, Schoch C, et al.: New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003, 102:2746–2755.PubMedCrossRefGoogle Scholar
  31. 31.
    Guerrasio A, Pilatrino C, De Micheli D, et al.: Assessment of minimal residual disease (MRD) in CBFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 2002, 16:1176–1181.PubMedCrossRefGoogle Scholar
  32. 32.
    Gallagher RE, Yeap BY, Bi W, et al.: Quantitative real-time RT-PCR analysis of PML-RAR alpha mRNA in acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 2003, 101:2521–2528.PubMedCrossRefGoogle Scholar
  33. 33.
    Grimwade D, Walker H, Oliver F, et al.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998, 92:2322–2333.PubMedGoogle Scholar
  34. 34.
    van Dongen JJ, Macintyre EA, Gabert JA, et al.: Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999, 13:1901–1928.PubMedCrossRefGoogle Scholar
  35. 35.
    Schnittger S, Schoch C, Dugas M, et al.: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002, 100:59–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Cloos J, Goemans BF, Hess CJ, et al.: Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006, 20:1217–1220.PubMedCrossRefGoogle Scholar
  37. 37.
    Burmeister T, Marschalek R, Schneider B, et al.: Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 2006, 20:451–457.PubMedCrossRefGoogle Scholar
  38. 38.
    Falini B, Mecucci C, Tiacci E, et al.: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005, 352:254–266.PubMedCrossRefGoogle Scholar
  39. 39.
    Gorello P, Cazzaniga G, Alberti F, et al.: Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2006, 20:1103–1108.PubMedCrossRefGoogle Scholar
  40. 40.
    Karakas T, Miething CC, Maurer U, et al.: The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 2002, 16:846–854.PubMedCrossRefGoogle Scholar
  41. 41.
    Weisser M, Kern W, Rauhut S, et al.: Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 2005, 19:1416–1423.PubMedCrossRefGoogle Scholar
  42. 42.
    Kreuzer KA, Saborowski A, Lupberger J, et al.: Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001, 114:313–318.PubMedCrossRefGoogle Scholar
  43. 43.
    Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al.: High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003, 101:837–845.CrossRefGoogle Scholar
  44. 44.
    Steinbach D, Hermann J, Viehmann S, et al.: Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet 2002, 133:118–123.PubMedCrossRefGoogle Scholar
  45. 45.
    Paydas S, Tanriverdi K, Yavuz S, et al.: PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol 2005, 79:257–261.PubMedCrossRefGoogle Scholar
  46. 46.
    Kerst G, Kreyenberg H, Roth C, et al.: Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. Br J Haematol 2005, 128:774–782.PubMedCrossRefGoogle Scholar
  47. 47.
    Malec M, Bjorklund E, Soderhall S, et al.: Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001, 15:716–727.PubMedCrossRefGoogle Scholar
  48. 48.
    Perea G, Lasa A, Aventin A, et al.: Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2006, 20:87–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Gianfaldoni G, Mannelli F, Baccini M, et al.: Clearance of leukaemic blasts from peripheral blood during standard induction treatment predicts the bone marrow response in acute myeloid leukaemia: a pilot study. Br J Haematol 2006, 134:54–57.PubMedCrossRefGoogle Scholar
  50. 50.
    Goulden N, Virgo P, Grimwade D: Minimal residual disease directed therapy for childhood acute myeloid leukaemia: the time is now. Br J Haematol 2006, 134:273–282.PubMedCrossRefGoogle Scholar
  51. 51.
    Leroy H, de Botton S, Grardel-Duflos N, et al.: Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 2005, 19:367–372.PubMedCrossRefGoogle Scholar
  52. 52.
    Coustan-Smith E, Sancho J, Hancock ML, et al.: Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002, 100:2399–2402.PubMedCrossRefGoogle Scholar
  53. 53.
    van der Velden V, Jacobs DC, Wijkhuijs AJ, et al.: Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002, 16:1432–1436.PubMedCrossRefGoogle Scholar
  54. 54.
    Breccia M, Diverio D, Noguera NI, et al.: Clinico-biological features and outcome of acute promyelocytic leukemia patients with persistent polymerase chain reaction-detectable disease after the AIDA front-line induction and consolidation therapy. Haematologica 2004, 89:29–33.PubMedGoogle Scholar
  55. 55.
    Hess CJ, Feller N, Denkers F, et al.: Immunophenotypical minimal residual disease as a short term endpoint for monitoring effects of targeted inhibitors in acute myeloid leukemia [abstract]. Blood (ASH Annual Meeting Abstracts) 2005, 106:Abstract 545.Google Scholar
  56. 56.
    Jordan CT, Upchurch D, Szilvassy SJ, et al.: The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000, 14:1777–1784.PubMedCrossRefGoogle Scholar
  57. 57.
    Taussig DC, Pearce DJ, Simpson C, et al.: Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood 2005, 4086–4092.Google Scholar
  58. 58.
    Bakker AB, Van den Oudenrijn S, Bakker AQ, et al.: C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2004, 64:8443–8450.PubMedCrossRefGoogle Scholar
  59. 59.
    van Rhenen A, Feller N, Kelder A, et al.: The novel AML stem cell associated antigen CLL-1 discriminates between normal and leukemic stem cells [abstract]. Blood (ASH Annual Meeting Abstracts) 2005, 106:Abstract 4.Google Scholar
  60. 60.
    van Rhenen A, Feller N, Kelder A, et al.: In acute myeloid leukemia both malignant and normal stem cells can be detected in remission bone marrow [abstract]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 2537.Google Scholar
  61. 61.
    Goodell MA, Brose K, Paradis G, et al.: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996, 183:1797–1806.PubMedCrossRefGoogle Scholar
  62. 62.
    Goodell MA, Rosenzweig M, Kim H, et al.: Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997, 3:1337–1345.PubMedCrossRefGoogle Scholar
  63. 63.
    Wulf GG, Wang RY, Kuehnle I, et al.: A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 2001, 98:1166–1173.PubMedCrossRefGoogle Scholar
  64. 64.
    Moshaver B, Feller N, Kelder A, et al.: The side population may provide the leukemic stem cell compartment complementary to the CD34+CD38-stem cell compartment. Implications for stem cell MRD detection and therapeutic targeting [abstract]. Haematologica 2006, 91:321.Google Scholar
  65. 65.
    Moshaver B, van der Pol MA, Westra GH, et al.: Identification of primitive subpopulations of acute myeloid leukemia side population (SP) stem cells defined by differentiation status and malignant character [abstract]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 2538.Google Scholar
  66. 66.
    Moshaver B, van der Pol MA, Westra G, et al.: Acute myeloid leukemia remssion bone marrow reveals the presence of malignant and normal side population (SP) stem cells whose frequencies and ratios predict clinical outcome [abstract]. Blood (ASH Annual Meeting Abstracts) 2006, 108:Abstract 2314.Google Scholar

Copyright information

© Current Medicine Group LLC 2007

Authors and Affiliations

  • Anna van Rhenen
  • Bijan Moshaver
  • Gert J. Ossenkoppele
  • Gerrit Jan Schuurhuis
    • 1
  1. 1.VU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations