Skip to main content

Advertisement

Log in

The Association Between Intra-abdominal Pressure and Diuretic Response in Heart Failure

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

An efficient diuretic response is vital during cardiac decompensation in heart failure (HF) patients. The increase in intra-abdominal pressure (IAP) could be one of the keys for understanding cardiorenal syndrome and guiding diuretic treatment during hospitalization. In this review, we analyze the relationship between IAP and diuretic response in HF patients.

Recent Findings

Increased IAP is associated with worsening renal function (WRF) in patients with advanced HF. Furthermore, the persistence of a rise in IAP after the first 72 h of intravenous diuretic treatment has been correlated with a worse diuretic response, a higher degree of congestion, and an impaired prognosis.

Summary

The rise in IAP in HF patients has been associated with impaired renal function and a lower diuretic response. Nonetheless, more studies are needed to elucidate the actual role of IAP in congestive nephropathy and whether it may help guide diuretic therapy during acute decompensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADHF :

acute decompensated heart failure

AKI :

acute kidney injury

CVP :

central venous pressure

CKD :

chronic kidney disease

eGRF :

estimated glomerular filtration rate

GDMT :

guideline-directed medical therapy

HF :

heart failure

HFrEF :

heart failure with reduced ejection fraction

HFpEF :

heart failure with preserved ejection fraction

IAH :

intra-abdominal hypertension

IAP :

intra-abdominal pressure

IVC :

inferior vena cava

LVEF :

left ventricular ejection fraction

NGAL :

neutrophil gelatinase-associated lipocalin

NYHA :

New York Heart Association

RAAS :

renin-angiotensin-aldosterone system

SNS :

sympathetic nervous system

VExUS :

venous excess ultrasound grading system

WRF :

worsening of renal function

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Trullàs JC, Pérez-Calvo JI, Conde-Martel A, Llàcer Iborra P, Suárez Pedreira I, Ormaechea G, et al. Epidemiology of heart failure with preserved ejection fraction: results from the RICA Registry. Med Clin (Barc). 2021;157(1):1–9. https://doi.org/10.1016/j.medcli.2020.05.059.

    Article  CAS  PubMed  Google Scholar 

  2. Farmakis D, Parissis J, Lekakis J, Filippatos G. Acute heart failure: epidemiology, risk factors, and prevention. Rev Esp Cardiol (Engl Ed). 2015;68(3):245–8. https://doi.org/10.1016/j.rec.2014.11.004.

    Article  PubMed  Google Scholar 

  3. Sayago-Silva I, García-López F, Segovia-Cubero J. Epidemiology of heart failure in Spain over the last 20 years. Rev Esp Cardiol (Engl Ed). 2013;66(8):649–56. https://doi.org/10.1016/j.rec.2013.03.012.

    Article  PubMed  Google Scholar 

  4. Dharmarajan K, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Fail Clin. 2017;13(3):417–26. https://doi.org/10.1016/j.hfc.2017.02.001.

    Article  PubMed  Google Scholar 

  5. Sánchez-Marteles M, Rubio-Gracia J, Giménez-López I. Pathophysiology of acute heart failure: a world to know. Rev Clin Esp (Barc). 2016;216(1):38–46. https://doi.org/10.1016/j.rce.2015.09.010.

    Article  PubMed  Google Scholar 

  6. Rubio-Gracia J, Sánchez-Marteles M, Pérez-calvo JI. Congestion in heart failure, a prominent role in pathophysiology, and a therapeutic goal. Span J Med. 2021;1:35–45. https://doi.org/10.24875/SJMED.M21000001.

    Article  Google Scholar 

  7. Boorsma EM, Ter Maaten JM, Damman K, Dinh W, Gustafsson F, Goldsmith S, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol. 2020;17(10):641–55. https://doi.org/10.1038/s41569-020-0379-7.

    Article  PubMed  Google Scholar 

  8. Núñez J, de la Espriella R, Rossignol P, Voors AA, Mullens W, Metra M, et al. Congestion in heart failure: a circulating biomarker-based perspective. A review from the Biomarkers Working Group of the Heart Failure Association, European Society of Cardiology [published correction appears in Eur J Heart Fail. 2023 Mar;25(3):443]. Eur J Heart Fail. 2022;24(10):1751–66. https://doi.org/10.1002/ejhf.2664.

    Article  CAS  PubMed  Google Scholar 

  9. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145(18):e876–94. https://doi.org/10.1161/CIR.0000000000001062.

    Article  PubMed  Google Scholar 

  10. Lala A, McNulty SE, Mentz RJ, Dunlay SM, Vader JM, AbouEzzeddine OF, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardiorenal rescue study in acute decompensated heart failure (CARESS-HF). Circ Heart Fail. 2015;8(4):741–8. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ambrosy AP, Pang PS, Khan S, Konstam MA, Fonarow GC, Traver B, et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J. 2013;34(11):835–43. https://doi.org/10.1093/eurheartj/ehs444.

    Article  PubMed  Google Scholar 

  12. Rubio-Gracia J, Demissei BG, Ter Maaten JM, Cleland JG, O'Connor CM, Metra M, et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol. 2018;258:185–91. https://doi.org/10.1016/j.ijcard.2018.01.067. In this article, Rubio et al, demonstrated that one-third of ADHF patients had persistent clinical congestion at discharge, a situation related to worse outcomes. Furthermore, the authors identified independent predictors linked to poor diuretic response residual congestion.

    Article  PubMed  Google Scholar 

  13. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44. https://doi.org/10.1093/eurheartj/ehv010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603. https://doi.org/10.1002/ejhf.1697.

    Article  PubMed  Google Scholar 

  15. Sanchez-Serna J, Hernandez-Vicente A, Garrido-Bravo IP, Pastor-Perez F, Noguera-Velasco JA, Casas-Pina T, et al. Impact of pre-hospital renal function on the detection of acute kidney injury in acute decompensated heart failure. Eur J Intern Med. 2020;77:66–72. https://doi.org/10.1016/j.ejim.2020.02.028.

    Article  CAS  PubMed  Google Scholar 

  16. JPE L, Nieminen MS, Peuhkurinen K, Pulkki K, Siirilä-Waris K, Sund R, et al. Markers of renal function and acute kidney injury in acute heart failure: definitions and impact on outcomes of the cardiorenal syndrome. Eur Heart J. 2010;31(22):2791–8. https://doi.org/10.1093/eurheartj/ehq293. This article is basic to understand the importance of renal function in heart failure and how to interpret renal function changes during HF decompensations.

    Article  CAS  Google Scholar 

  17. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60(12):1031–42. https://doi.org/10.1016/j.jacc.2012.01.077.

    Article  PubMed  Google Scholar 

  18. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39. https://doi.org/10.1016/j.jacc.2008.07.051.

    Article  PubMed  Google Scholar 

  19. Hopper I, Kotecha D, Chin KL, Mentz RJ, von Lueder TG. Comorbidities in heart failure: are there gender differences? Curr Heart Fail Rep. 2016;13(1):1–12. https://doi.org/10.1007/s11897-016-0280-1.

    Article  PubMed  Google Scholar 

  20. Pérez-Calvo JI, Josa-Laorden C, Rubio-Gracia J, Giménez-López I. Comorbidities in heart failure with mid-range ejection fraction. Eur J Intern Med. 2017;41:e27–8. https://doi.org/10.1016/j.ejim.2017.02.010.

    Article  PubMed  Google Scholar 

  21. Ruiz-Laiglesia FJ, Sánchez-Marteles M, Pérez-Calvo JI, Formiga F, Bartolomé-Satué JA, Armengou-Arxé A, et al. Comorbidity in heart failure. Results of the Spanish RICA Registry. QJM. 2014;107(12):989–94. https://doi.org/10.1093/qjmed/hcu127.

    Article  PubMed  Google Scholar 

  22. Damman K, MAE V, Voors AA, O’Connor CM, Van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69. https://doi.org/10.1093/eurheartj/eht386. This meta-analysis is the largest study were renal function has demonstrated it’s prognostic impact in HF patients. Due to these results, cardiorenal interactions are now an important topic under investigation.

    Article  PubMed  Google Scholar 

  23. Kuroda S, Damman K, ter Maaten JM, Voors AA, Okumura T, Kida K, et al. Very early diuretic response after admission for acute heart failure. J Card Fail. 2019;25(1):12–9. https://doi.org/10.1016/j.cardfail.2018.09.004.

    Article  PubMed  Google Scholar 

  24. Valente MAE, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O’Connor CM, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35(19):1284–93. https://doi.org/10.1093/eurheartj/ehu065.

    Article  CAS  PubMed  Google Scholar 

  25. Ter Maaten JM, Valente MAE, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol. 2015;12(3):184–92. https://doi.org/10.1038/nrcardio.2014.215.

    Article  CAS  PubMed  Google Scholar 

  26. Ter Maaten JM, Dunning AM, Valente MAE, Damman K, Ezekowitz JA, Califf RM, et al. Diuretic response in acute heart failure-an analysis from ASCEND-HF. Am Heart J. 2015;170(2):313–21. https://doi.org/10.1016/j.ahj.2015.05.003.

    Article  CAS  PubMed  Google Scholar 

  27. Ter Maaten JM, Valente MAE, Damman K, Cleland JG, Givertz MM, Metra M, et al. Combining diuretic response and hemoconcentration to predict rehospitalization after admission for acute heart failure. Circ Heart Fail. 2016;9(6):e002845. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002845.

    Article  CAS  PubMed  Google Scholar 

  28. Aronson D, Abassi Z, Allon E, Burger AJ. Fluid loss, venous congestion, and worsening renal function in acute decompensated heart failure. Eur J Heart Fail. 2013;15(6):637–43. https://doi.org/10.1093/eurjhf/hft036.

    Article  CAS  PubMed  Google Scholar 

  29. Afsar B, Ortiz A, Covic A, Solak Y, Goldsmith D, Kanbay M. Focus on renal congestion in heart failure. Clin Kidney J. 2016;9(1):39–47. https://doi.org/10.1093/ckj/sfv124.

    Article  CAS  PubMed  Google Scholar 

  30. Rubio Gracia J, Sánchez Marteles M, Pérez Calvo JI. Involvement of systemic venous congestion in heart failure. Rev Clin Esp (Barc). 2017;217(3):161–9. https://doi.org/10.1016/j.rce.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  31. Dupont M, Mullens W, Tang WH. Impact of systemic venous congestion in heart failure. Curr Heart Fail Rep. 2011;8(4):233–41. https://doi.org/10.1007/s11897-011-0071-7.

    Article  PubMed  Google Scholar 

  32. Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014;35(7):448–54. https://doi.org/10.1093/eurheartj/eht456.

    Article  CAS  PubMed  Google Scholar 

  33. Testani JM, Damman K. Venous congestion and renal function in heart failure ... it's complicated. Eur J Heart Fail. 2013;15(6):599–601. https://doi.org/10.1093/eurjhf/hft060.

    Article  PubMed  Google Scholar 

  34. Gnanaraj JF, Von Haehling S, Anker SD, Raj DS, Radhakrishnan J. The relevance of congestion in the cardio-renal syndrome. Kidney Int. 2013;83(3):384–91. https://doi.org/10.1038/ki.2012.406.

    Article  CAS  Google Scholar 

  35. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96. https://doi.org/10.1016/j.jacc.2008.05.068.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Damman K, Voors AA, Hillege HL, Navis G, Lechat P, Van Veldhuisen DJ, et al. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail. 2010;12(9):974–82. https://doi.org/10.1093/eurjhf/hfq118.

    Article  PubMed  Google Scholar 

  37. Shiga T, Suzuki A, Haruta S, Mori F, Ota Y, Yagi M, et al. Clinical characteristics of hospitalized heart failure patients with preserved, mid-range, and reduced ejection fractions in Japan. ESC Heart Fail. 2019;6(3):475–86. https://doi.org/10.1002/ehf2.12418.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lazzeri C, Valente S, Tarquini R, Gensini GF. Cardiorenal syndrome caused by heart failure with preserved ejection fraction. Int J Nephrol. 2011;2011:634903. https://doi.org/10.4061/2011/634903.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies [published correction appears in Eur Heart J. 2019 Feb 7;40(6):528]. Eur Heart J. 2018;39(30):2780–92. https://doi.org/10.1093/eurheartj/ehy301.

    Article  CAS  PubMed  Google Scholar 

  40. Wattad M, Darawsha W, Solomonica A, Hijazi M, Kaplan M, Makhoul BF, et al. Interaction between worsening renal function and persistent congestion in acute decompensated heart failure. Am J Cardiol. 2015;115(7):932–7. https://doi.org/10.1016/j.amjcard.2015.01.019.

    Article  PubMed  Google Scholar 

  41. Angelini A, Castellani C, Virzì GM, Fedrigo M, Thiene G, Valente M, et al. The role of congestion in cardiorenal syndrome type 2: new pathophysiological insights into an experimental model of heart failure. Cardiorenal Med. 2015;6(1):61–72. https://doi.org/10.1159/000440775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62. https://doi.org/10.1161/CIRCHEARTFAILURE.111.963413.

    Article  PubMed  Google Scholar 

  43. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8. https://doi.org/10.1016/j.jacc.2008.08.080. Retrospective analysis of a large cohort of chronic HF patients who were explored by right catheterization. The authors concluded that central venous pressure was an independent predictor factor of impaired renal function, on top of hypotension. The results focus on the importance of congestion as an independent physiopatological mechanism link to impaired renal function in HF.

    Article  PubMed  Google Scholar 

  44. Husain-Syed F, Gröne HJ, Assmus B, Bauer P, Gall H, Seeger W, et al. Congestive nephropathy: a neglected entity? Proposal for diagnostic criteria and future perspectives. ESC Heart Fail. 2021;8(1):183–203. https://doi.org/10.1002/ehf2.13118. In this article, the authors propose standard definitions for congestive nephropathy and suggest future research questions to update knowledge in this area.

    Article  PubMed  Google Scholar 

  45. Abu-Saleh N, Aronson D, Khamaisi M, Khoury EE, Awad H, Kabala A, et al. Increased intra-abdominal pressure induces acute kidney injury in an experimental model of congestive heart failure. J Card Fail. 2019;25(6):468–78. https://doi.org/10.1016/j.cardfail.2019.03.008.

    Article  PubMed  Google Scholar 

  46. Willassen Y, Ofstad J. Intrarenal venous and cortical catheter pressures in the dog kidney. Scand J Clin Lab Invest. 1979;39(8):697–705. https://doi.org/10.1080/00365517909108160.

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen VQ, Gadiraju TV, Patel H, Park M, Le Jemtel TH, Jaiswal A. Intra-abdominal hypertension: an important consideration for diuretic resistance in acute decompensated heart failure. Clin Cardiol. 2016;39(1):37–40. https://doi.org/10.1002/clc.22489.

    Article  PubMed  Google Scholar 

  48. Malbrain MLNG, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32(11):1722–32. https://doi.org/10.1007/s00134-006-0349-5.

    Article  PubMed  Google Scholar 

  49. Zymliński R, Biegus J, Sokolski M, Jankowska EA, Banasiak W, Ponikowski P. Validation of transurethral intra-abdominal pressure measurement in acute heart failure. Pol Arch Intern Med. 2018;128(6):403–5. https://doi.org/10.20452/pamw.4290.

    Article  PubMed  Google Scholar 

  50. Malbrain MLNG, De Laet I, De Waele JJ, Sugrue M, Schachtrupp A, Duchesne J, et al. The role of abdominal compliance, the neglected parameter in critically ill patients - a consensus review of 16. Part 2: measurement techniques and management recommendations. Anaesthesiol Intensive Ther. 2014;46(5):406–32. https://doi.org/10.5603/AIT.2014.0063.

    Article  PubMed  Google Scholar 

  51. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, WHW T, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95. https://doi.org/10.1016/j.jacc.2013.04.070. Positioning paper were Verbrugge FH et al review the important role of increased intraabdominal pressure, abdominal congestion and organ dysfunction in HF patients.

    Article  PubMed  Google Scholar 

  52. Mohmand H, Goldfarb S. Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J Am Soc Nephrol. 2011;22(4):615–21. https://doi.org/10.1681/ASN.2010121222.

    Article  PubMed  Google Scholar 

  53. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6. https://doi.org/10.1016/j.jacc.2007.09.043. Unicentrical and observational study that associated for the first time the role of increased intraabdominal pressure on impaired renal function and worsening renal function of patients with severe left ventricle dysfunction.

    Article  PubMed  Google Scholar 

  54. Boorsma EM, ter Maaten JM, Voors AA, van Veldhuisen DJ. Renal compression in heart failure: the renal tamponade hypothesis. JACC Heart Fail. 2022;10(3):175–83. https://doi.org/10.1016/j.jchf.2021.12.005.

    Article  PubMed  Google Scholar 

  55. Rubio-Gracia J, Giménez-López I, Sánchez-Marteles M, Josa-Laorden C, Pérez-Calvo JI. Intra-abdominal pressure and its relationship with markers of congestion in patients admitted for acute decompensated heart failure. Heart Vessels. 2020;35(11):1545–56. https://doi.org/10.1007/s00380-020-01634-9. Observational study in non-critical HF patients that identified the absence of significant intraabdominal pressure reduction at 48 h to a higher prevalence of all-cause mortality and HF re-hospitalizations.

    Article  CAS  PubMed  Google Scholar 

  56. Mullens W, Abrahams Z, Francis GS, Taylor DO, Starling RC, Tang WH. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail. 2008;14(6):508–14. https://doi.org/10.1016/j.cardfail.2008.02.010.

    Article  PubMed  Google Scholar 

  57. Rubio-Gracia J, Giménez-López I, Damman K, Sánchez-Marteles M, Garcés-Horna V, Josa-Laorden C, et al. Intraabdominal pressure and worsening renal function during decompensations of heart failure. A preliminary report from the PIA study. Rev Clin Esp (Barc). 2019;219(5):229–35. https://doi.org/10.1016/j.rce.2018.09.022.

    Article  CAS  PubMed  Google Scholar 

  58. Rubio Gracia J, Giménez López I, Josa Laorden C, Sánchez Marteles M, Garcés Horna V, de la Rica Escuín ML, et al. Variation in intraabdominal pressure in patients with acute heart failure according to left ventricular ejection fraction. Results of an intraabdominal pressure study. Rev Clin Esp (Barc). 2021;221(7):384–92. https://doi.org/10.1016/j.rceng.2020.01.011.

    Article  CAS  PubMed  Google Scholar 

  59. Wijayaratne D, Muthuppalaniappan VM, Davenport A. Serum CA125 a potential marker of volume status for peritoneal dialysis patients? Int J Artif Organs. 2021;44(12):1029–33. https://doi.org/10.1177/03913988211016862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Núñez J, Bayés-Genís A, Revuelta-López E, ter Maaten JM, Miñana G, Barallat J, et al. Clinical role of CA125 in worsening heart failure: A BIOSTAT-CHF study subanalysis. JACC Heart Fail. 2020;8(5):386–97. https://doi.org/10.1016/j.jchf.2019.12.005.

    Article  PubMed  Google Scholar 

  61. Josa-laorden C, Giménez-López I, Butcher C, Sánchez-Marteles S, Rubio-Gracia J, et al. Prognostic value of glycoprotein CA125 and their time-line changes in decompensated heart failure. Span J Med. 2021;1:1–11. https://doi.org/10.24875/SJMED.M21000008.

    Article  Google Scholar 

  62. Núñez-Marín G, de la Espriella R, Santas E, Lorenzo M, Miñana G, Núñez E, et al. CA125 but not NT-proBNP predicts the presence of a congestive intrarenal venous flow in patients with acute heart failure; 2021. https://doi.org/10.1093/ehjacc/zuab022.

    Book  Google Scholar 

  63. Rubio-Gracia J, Crespo-Aznarez S, De la Espriella R, Nuñez G, Sánchez-Marteles M, Garcés-Horna V, et al. Utility of plasma CA125 as a proxy of intra-abdominal pressure in patients with acute heart failure. Eur Heart J Acute Cardiovasc Care. 2022;11(6):453–60. https://doi.org/10.1093/ehjacc/zuac046. Observational study were CA125, a biomarker of tissular congestion, was identified as a marker of abdominal congestion (increase intraabdominal pressure).

    Article  PubMed  Google Scholar 

  64. Marini C, Fragasso G, Italia L, Sisakian H, Tufaro V, Ingallina G, et al. Lung ultrasound-guided therapy reduces acute decompensation events in chronic heart failure. Heart. 2020;106(24):1934–9. https://doi.org/10.1136/heartjnl-2019-316429.

    Article  PubMed  Google Scholar 

  65. Curbelo J, Rodriguez-Cortes P, Aguilera M, Gil-Martinez P, Martín D, Suarez FC. Comparison between inferior vena cava ultrasound, lung ultrasound, bioelectric impedance analysis, and natriuretic peptides in chronic heart failure. Curr Med Res Opin. 2019;35(4):705–13. https://doi.org/10.1080/03007995.2018.1519502.

    Article  CAS  PubMed  Google Scholar 

  66. Araiza-Garaygordobil D, Gopar-Nieto R, Martinez-Amezcua P, Cabello-López A, Alanis-Estrada G, Luna-Herbert A, et al. A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study). Am Heart J. 2020;227:31–9. https://doi.org/10.1016/j.ahj.2020.06.003.

    Article  PubMed  Google Scholar 

  67. Rivas-Lasarte M, Álvarez-García J, Fernández-Martínez J, Maestro A, López-López L, Solé-González E, et al. Lung ultrasound-guided treatment in ambulatory patients with heart failure: a randomized controlled clinical trial (LUS-HF study). Eur J Heart Fail. 2019;21(12):1605–13. https://doi.org/10.1002/ejhf.1604.

    Article  CAS  PubMed  Google Scholar 

  68. Burgos LM, Baro Vila R, Goyeneche A, Muñoz F, Spaccavento A, Fasan MA, et al. Design and rationale of the inferior vena CAVA and Lung UltraSound-guided therapy in Acute Heart Failure (CAVAL US-AHF Study): a randomised controlled trial. Open. Heart. 2022;9(2):e002105. https://doi.org/10.1136/openhrt-2022-002105.

    Article  Google Scholar 

  69. Spevack R, Al Shukairi M, Jayaraman D, Dankoff J, Rudski L, Lipes J. Serial lung and IVC ultrasound in the assessment of congestive heart failure. Crit Ultrasound J. 2017;9(1):7. https://doi.org/10.1186/s13089-017-0062-3.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koratala A, Reisinger N. Venous excess doppler ultrasound for the nephrologist: pearls and pitfalls. Kidney Med. 2022;4(7):100482. https://doi.org/10.1016/j.xkme.2022.100482.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Soliman-Aboumarie H, Denault AY. How to assess systemic venous congestion with point of care ultrasound. Eur Heart J Cardiovasc Imaging. 2023;24(2):177–80. https://doi.org/10.1093/ehjci/jeac239.

    Article  PubMed  Google Scholar 

  72. Torres Macho J, García Sánchez FJ, Garmilla Ezquerra P, Beltrán Romero L, Canora Lebrato J, Casas Rojo JM, et al. Positioning document on incorporating point-of-care ultrasound in Internal Medicine departments. Rev Clin Esp (Barc). 2018;218(4):192–8. https://doi.org/10.1016/j.rce.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  73. Pellicori P, Shah P, Cuthbert J, Urbinati A, Zhang J, Kallvikbacka-Bennett A, et al. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail. 2019;21(7):904–16. https://doi.org/10.1002/ejhf.1383.

    Article  CAS  PubMed  Google Scholar 

  74. Hacıalioğulları F, Yılmaz F, Yılmaz A, Sönmez BM, Demir TA, Karadaş MA, et al. Role of point-of-care lung and inferior vena cava ultrasound in clinical decisions for patients presenting to the emergency department with symptoms of acute decompensated heart failure. J Ultrasound Med. 2021;40(4):751–61. https://doi.org/10.1002/jum.15447.

    Article  PubMed  Google Scholar 

  75. Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37(27):2097–104. https://doi.org/10.1093/eurheartj/ehw164.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bauman Z, Coba V, Gassner M, Amponsah D, Gallien J, Blyden D, et al. Inferior vena cava collapsibility loses correlation with internal jugular vein collapsibility during increased thoracic or intra-abdominal pressure. J Ultrasound. 2015;18(4):343–8. https://doi.org/10.1007/s40477-015-0181-2.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Josa-Laorden C, Giménez-López I, Rubio-Gracia J, Ruiz-Laiglesia F, Garcés-Horna V, Pérez-Calvo JI. Valor pronóstico de la medición del diámetro y colapso inspiratorio de la vena cava inferior en la insuficiencia cardiaca aguda [Prognostic value of measuring the diameter and inspiratory collapse of the inferior vena cava in acute heart failure]. Rev Clin Esp (Barc). 2016;216(4):183–90. https://doi.org/10.1016/j.rce.2015.11.012.

    Article  CAS  PubMed  Google Scholar 

  78. Khandwalla RM, Birkeland KT, Zimmer R, Henry TD, Nazarian R, Sudan M, et al. Usefulness of serial measurements of inferior vena cava diameter by VscanTM to identify patients with heart failure at high risk of hospitalization. Am J Cardiol. 2017;119(10):1631–6. https://doi.org/10.1016/j.amjcard.2017.02.007.

    Article  PubMed  Google Scholar 

  79. Torres-Macho J, Cerqueiro-González JM, Arévalo-Lorido JC, Llácer-Iborra P, Cepeda-Rodrigo JM, Cubo-Romano P, et al. The effects of a therapeutic strategy guided by lung ultrasound on 6-month outcomes in patients with heart failure: results from the EPICC randomized controlled trial. J Clin Med. 2022;11(16):4930. https://doi.org/10.3390/jcm11164930.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R, et al. Quantifying systemic congestion with point-of-care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J. 2020;12(1):16. https://doi.org/10.1186/s13089-020-00163-w. In this article, venous excess ultrasound (VeXus) was described for the first time. It is a basic paper to better understand the implications of congestion in venous hemodynamics.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rola P, Miralles-Aguiar F, Argaiz E, Beaubien-Souligny W, Haycock K, Karimov T, et al. Clinical applications of the venous excess ultrasound (VExUS) score: conceptual review and case series. Ultrasound J. 2021;13(1):32. https://doi.org/10.1186/s13089-021-00232-8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Trpkov C, Grant ADM, Fine NM. Intrarenal doppler ultrasound renal venous stasis index correlates with acute cardiorenal syndrome in patients with acute decompensated heart failure. CJC Open. 2021;3(12):1444–52. https://doi.org/10.1016/j.cjco.2021.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261(6):884–8. https://doi.org/10.1001/jama.1989.03420060100040.

    Article  CAS  PubMed  Google Scholar 

  84. Damy T, Kallvikbacka-Bennett A, Zhang J, Goode K, Buga L, Hobkirk J, et al. Does the physical examination still have a role in patients with suspected heart failure? Eur J Heart Fail. 2011;13(12):1340–8. https://doi.org/10.1093/eurjhf/hfr128.

    Article  PubMed  Google Scholar 

  85. Selvaraj S, Claggett B, Pozzi A, McMurray JJV, Jhund PS, Packer M, et al. Prognostic implications of congestion on physical examination among contemporary patients with heart failure and reduced ejection fraction: PARADIGM-HF. Circulation. 2019;140(17):1369–79. https://doi.org/10.1161/CIRCULATIONAHA.119.039920.

    Article  CAS  PubMed  Google Scholar 

  86. Llàcer P, Gallardo MÁ, Palau P, Moreno MC, Castillo C, Fernández C, et al. Comparison between CA125 and NT-proBNP for evaluating congestion in acute heart failure. Comparación entre CA125 y NT-proBNP para valorar la congestión en insuficiencia cardíaca aguda. Med Clin (Barc). 2021;156(12):589–94. https://doi.org/10.1016/j.medcli.2020.05.063.

    Article  CAS  PubMed  Google Scholar 

  87. Torres-Arrese M, Mata-Martínez A, Luordo-Tedesco D, García-Casasola G, Alonso-González R, Montero-Hernández E, et al. Usefulness of systemic venous ultrasound protocols in the prognosis of heart failure patients: results from a prospective multicentric study. J Clin Med. 2023;12(4):1281. https://doi.org/10.3390/jcm12041281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain MLNG, De Keulenaer B, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206. https://doi.org/10.1007/s00134-013-2906-z.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Van Damme L, De Waele JJ. Effect of decompressive laparotomy on organ function in patients with abdominal compartment syndrome: a systematic review and meta-analysis. Crit Care. 2018;22(1):179. https://doi.org/10.1186/s13054-018-2103-0.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development work group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30. https://doi.org/10.7326/0003-4819-158-11-201306040-00007.

    Article  PubMed  Google Scholar 

  91. Stevens LA, Levey AS. Chronic kidney disease in the elderly--how to assess risk. N Engl J Med. 2005;352(20):2122–4. https://doi.org/10.1056/NEJMe05803.

    Article  CAS  PubMed  Google Scholar 

  92. Valente MAE, Hillege HL, Navis G, Voors AA, Dunselman PHJM, Van Veldhuisen DJ, et al. The chronic kidney disease epidemiology collaboration equation outperforms the modification of diet in renal disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail. 2014;16(1):86–94. https://doi.org/10.1093/eurjhf/hft128.

    Article  CAS  PubMed  Google Scholar 

  93. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. https://doi.org/10.1186/cc5713.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu H, Sridhar VS, Lovblom LE, Lytvyn Y, Burger D, Burns K, et al. Markers of kidney injury, inflammation, and fibrosis associated with ertugliflozin in patients with CKD and diabetes. Kidney Int Rep. 2021;6(8):2095–104. https://doi.org/10.1016/j.ekir.2021.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rubio-Gracia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1224 kb)

ESM 2

(PDF 1224 kb)

ESM 3

(PDF 1224 kb)

ESM 4

(PDF 1224 kb)

ESM 5

(PDF 1224 kb)

ESM 6

(PDF 1224 kb)

ESM 7

(PDF 1224 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crespo-Aznarez, S., Campos-Sáenz de Santamaría, A., Sánchez-Marteles, M. et al. The Association Between Intra-abdominal Pressure and Diuretic Response in Heart Failure. Curr Heart Fail Rep 20, 390–400 (2023). https://doi.org/10.1007/s11897-023-00617-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00617-x

Keywords

Navigation