Skip to main content

Advertisement

Log in

Tricuspid Regurgitation: Right Ventricular Volume Versus Pressure Load

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Tricuspid regurgitation is associated with increased mortality in proportion to right ventricular adaptation to increased volume loading and pulmonary artery pressure. We here review recent progress in the understanding of right ventricular adaptation to pre- and after-loading conditions for improved recommendations of tricuspid valve repair.

Recent Findings

Trans-catheter tricuspid valve repair has made the correction of tricuspid regurgitation more easily available, triggering a need of tighter indications. Several studies have shown the feasibility and relevance to the indications of tricuspid valve repair of imaging of right ventricular ejection fraction measured by magnetic resonance imaging or 3D-echocardiography, and the 2D-echocardiography of the tricuspid annular plane systolic excursion to systolic pulmonary artery pressure ratio combined with invasively determined mean pulmonary artery pressure and pulmonary vascular resistance.

Summary

Improved definitions of right ventricular failure and pulmonary hypertension may be considered in future recommendations on the treatment of tricuspid regurgitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.

    Article  PubMed  Google Scholar 

  2. Itelman E, Vatury O, Kuperstein R, Ben-Zekry S, Hay I, Fefer P, et al. The association of severe tricuspid regurgitation with poor survival is modified by right ventricular pressure and function: insights from the SHEBAHEART big data. J Am Soc Echocardiogr. 2022;35:1028–36.

    Article  PubMed  Google Scholar 

  3. •• Sanz J, Sanchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: JACC State-of-the-Art Review. J Am CollCardiol. 2019;73: 1463–1482. (Important updated guidelines, reviews or recent studies with impact on clinical practice).

  4. •• Sanz J. Volume overload and the right heart. In: Gaine SP, Naeije R and Peacock AJ eds, The right heart, 2nd edition, Springer Nature, Cham, Switzerland. 2021;8:19–136. (Important updated guidelines, reviews or recent studies with impact on clinical practice).

  5. West JB. The role of the fragility of the pulmonary blood-gas barrier in the evolution of the pulmonary circulation. Am J Physiol Regul Integr Comp Physiol. 2013;304:R171-176.

    Article  CAS  PubMed  Google Scholar 

  6. Starr I, Jeffers WA, Meade RH Jr. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease. Am Heart J. 1943;26:291–301.

    Article  Google Scholar 

  7. Fontan F, Baudet F. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gewillig M. The Fontan circulation. Heart. 2005;91:839–46.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Naeije R, Saggar R, Badesch D, Rajagopalan S, Gargani L, Rischard F, et al. Exercise-induced pulmonary hypertension: translating pathophysiological concepts into clinical practice. Chest. 2018;154:10–5.

    Article  PubMed  Google Scholar 

  10. Paridon SM, Mitchell PD, Colan SD, Williams RV, Blaufox A, Li JS, Margossian R, et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J Am Coll Cardiol. 2008;52:99–107.

    Article  PubMed  Google Scholar 

  11. Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;2:326–32.

    Article  CAS  PubMed  Google Scholar 

  12. Patterson SW, Piper H, Starling EH. The regulation of the heart beat. J Physiol. 1914;48:465–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenblueth A, Alanis J, Lopez E, Rubio R. The adaptation of ventricular muscle to different circulatory conditions. Arch Int Physiol Biochim. 1959;67:358–73.

    CAS  PubMed  Google Scholar 

  14. VonkNoordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53:1801900.

    Article  Google Scholar 

  15. Tello K, Dalmer A, Axmann J, Vanderpool R, Ghofrani HA, Naeije R, et al. Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail. 2019;12:e005512.

    Article  PubMed  Google Scholar 

  16. Sanz J, García-Alvarez A, Fernández-Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart. 2012;98:238–43.

    Article  PubMed  Google Scholar 

  17. Vanderpool RR, Rischard F, Naeije R, Hunter K, Simon MA. Simple functional imaging of the right ventricle in pulmonary hypertension: can right ventricular ejection fraction be improved? Int J Cardiol. 2016;223:93–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Badano LP, Addetia K, Pontone G, Torlasco C, Lang RM, Parati G, et al. Advanced imaging of right ventricular anatomy and function. Heart. 2020;106:1469–76.

    Article  CAS  PubMed  Google Scholar 

  19. Sanz J, Conroy J, Narula J. Imaging of the right ventricle. Cardiol Clin. 2012;30:189–203.

    Article  PubMed  Google Scholar 

  20. Urabe Y, Hamada Y, Spinale FG, Carabello BA, Kent RL, Cooper G 4th, Mann DL. Cardiocyte contractile performance in experimental biventricular volume-overload hypertrophy. Am J Physiol. 1993;264:H1615-1623.

    CAS  PubMed  Google Scholar 

  21. •• Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC for the management of gown-up congenital heart disease. Eur Heart J. 2010;31:2915–2957. (Important updated guidelines, reviews or recent studies with impact on clinical practice).

  22. •• Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3d, Gentile F, et al. 2020 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am CollCardiol. 2021;77:e25-e197. (Important updated guidelines, reviews or recent studies with impact on clinical practice).

  23. Bossers GPL, Hagdorn QAJ, Ploegstra MJ, Borgdorff MAJ, Siljé HW, Beger RMF, et al. Volume load-induced right ventricular dysfunction in animal models: insights in a translational gap in congenital heart disease. Eur J Heart Fail. 2018;20:808–12.

    Article  PubMed  Google Scholar 

  24. Szabo G, Soos P, Bahrle S, Radovits T, Weigang E, Kekesi V, et al. Adaptation of the right ventricle to an increased afterload in the chronically volume overloaded heart. Ann Thorac Surg. 2006;82:989–95.

    Article  PubMed  Google Scholar 

  25. Bove T, Vandekerckhove K, Bouchez S, Wouters P, Somers P, Van Nooten G. Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2014;147:1956–65.

    Article  PubMed  Google Scholar 

  26. Shah AS, Atkins BZ, Hata JA, Tai O, Kypson AP, Lilly RE, et al. Early effects of right ventricular volume overload on ventricular performance and beta-adrenergic signaling. J Thorac Cardiovasc Surg. 2000;120:342–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ersboell M, Vejlstrup N, Nilsson JC, Kjaergaard J, Norman W, Lange T, et al. Percutaneous pulmonary valve replacement after different duration of free pulmonary regurgitation in a porcine model: effects on the right ventricle. Int J Cardiol. 2013;167:2944–51.

    Article  PubMed  Google Scholar 

  28. Weyman AE, Wann S, Feigenbaum H, Dillon JC. Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation. 1976;54:179–86.

    Article  CAS  PubMed  Google Scholar 

  29. Feneley M, Gavaghan T. Paradoxical and pseudoparadoxical interventricular septal motion in patients with right ventricular volume overload. Circulation. 1986;74:230–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chalard A, Sanchez I, Gouton M, Henaine R, Salami FA, Nonet J, et al. Effect of pulmonary valve replacement on left ventricular function in patients with tetralogy of Fallot. Am J Cardiol. 2012;110:1828–35.

    Article  PubMed  Google Scholar 

  31. Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J. 1990;63:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coats L, Khambadkone S, Derrick G, Sridharan S, Schievano S, Mist B, et al. Physiological consequences of percutaneous pulmonary valve implantation: the different behaviour of volume- and pressure-overloaded ventricles. Eur Heart J. 2007;28:1886–93.

    Article  PubMed  Google Scholar 

  33. Kremer N, Rako Z, Douschan P, Gall H, Ghofrani HA, Grimminger F, et al. Unmasking right ventricular-arterial uncoupling during fluid challenge in pulmonary hypertension. J Heart Lung Transplant. 2022;41:345–55.

    Article  PubMed  Google Scholar 

  34. Naeije R, Badagliacca R. The overloaded right heart and ventricular interdependence. Cardiovasc Res. 2017;113:1474–85.

    Article  CAS  PubMed  Google Scholar 

  35. Kresoja KP, Rommel KP, Thiele H, Lurz P. Ventricular interaction in a patient with heart failure with preserved ejection fraction and severe tricuspid regurgitation. Circ Heart Fail. 2021;14:e008768.

    Article  PubMed  Google Scholar 

  36. Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American Thoracic Society research statement. Am J Respir Crit Care Med. 2018;198:e15–43. https://doi.org/10.1164/rccm.201806-1160ST.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bogaard HJ, Abe K, VonkNoordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.

    Article  CAS  PubMed  Google Scholar 

  38. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115:176–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otani H, Kagaya Y, Yamane Y, Chida M, Ito K, Namiuchi S, et al. Long-term right ventricular volume overload increases myocardial fluorodeoxyglucose uptake in the interventricular septum in patients with atrial septal defect. Circulation. 2000;101:1686–92.

    Article  CAS  PubMed  Google Scholar 

  40. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomer A, Martinez MJ, et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol. 2001;38:1137–42.

    Article  CAS  PubMed  Google Scholar 

  41. Vogel-Claussen J, Skrok J, Shehata ML, Skrok J, Singh S, Boyce D, et al. Right and left ventricular myocardial perfusion reserves correlate with right ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension. Radiology. 2011;258:119–27.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood). 2005;230:507–19.

    Article  CAS  PubMed  Google Scholar 

  43. van der Feen DE, Bartelds B, de Boer RA, Berger RMF. Pulmonary arterial hypertension in congenital heart disease: translational opportunities to study the reversibility of pulmonary vascular disease. Eur Heart J. 2017;38:2034–941.

    Article  PubMed  Google Scholar 

  44. Shiran A, Sagie A. Tricuspid regurgitation in mitral valve disease incidence, prognostic implications, mechanism, and management. J Am Coll Cardiol. 2009;53:401–8.

    Article  PubMed  Google Scholar 

  45. Topilsky Y, Nkomo VT, Vatury O, Michelena HI, Letourneau T, Suri RM, et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014;7:1185–94.

    Article  PubMed  Google Scholar 

  46. Nishimara RA, Otto CM, Bonow RO , Carabello BA, Erwin JP 3d, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:e57–185.Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43 405–409.

  47. Bartko PE, Arfsten H, Frey MK, Heitzinger G, Pavo N, Cho A, et al. Natural history of functional tricuspid regurgitation: implications of quantitative Doppler assessment. JACC Cardiovasc Imaging. 2019;12:389–97.

    Article  PubMed  Google Scholar 

  48. Zhan Y, Debs D, Khan MA, Nguyen DT, Graviss EA, Khalaf F, et al. Natural history of functional tricuspid regurgitation quantified by cardiovascular magnetic resonance. J Am Coll Cardiol. 2020;76:1291–301.

    Article  PubMed  Google Scholar 

  49. Neuhold S, Huelsmann M, Pernicka E, Graf A, Bonderman D, Adlbrecht C, et al. Impact of tricuspid regurgitation on survival in patients with chronic heart failure: unexpected findings of a long-term observational study. Eur Heart J. 2013;34:844–52.

    Article  CAS  PubMed  Google Scholar 

  50. Kim YJ, Kwon DA, Kim HK, Park JS, Hahn S, Kim KH, et al. Determinants of surgical outcome in patients with isolated tricuspid regurgitation. Circulation. 2009;120:1672–8.

    Article  PubMed  Google Scholar 

  51. Park JB, Kim HK, Jung JH, Klem I, Yoon YE, Lee SP, et al. Prognostic value of cardiac MR imaging for preoperative asessment of patients with severe functional tricuspid regurgitation. Radiology. 2016;280:723–34.

    Article  PubMed  Google Scholar 

  52. Orban M, Wolff S, Braun D, Stolz L, Higuchi S, Stark K, et al. Right ventricular function in transcatheter edge-to-edge tricuspid valve repair. JACC Cardiovasc Imaging. 2021;14:2477–9.

    Article  PubMed  Google Scholar 

  53. •• Lurz P, Orban M, Besler C, Braun D, Schlotter F, Noack T, et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair. Eur Heart J. 2020;41:2785–95. (Important updated guidelines, reviews or recent studies with impact on clinical practice)

    Article  CAS  PubMed  Google Scholar 

  54. Taramasso M, Benfari G, van der Bijl P, Alessandrini H, Attinger-Toller A, Tiasco L, et al. Transcatheter versus medical treatment of patients with symptomatic severe tricuspid regurgitation. J Am Coll Cardiol. 2019;74:2998–3008.

    Article  CAS  PubMed  Google Scholar 

  55. •• D'Alto M, Naeije R. Transcatheter tricuspid valve repair in patients with pulmonary hypertension. Eur Heart J. 2020;41:2811–281. (Important updated guidelines, reviews or recent studies with impact on clinical practice).

  56. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;2022(43):3618–731.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Naeije.

Ethics declarations

Conflict of Interest

RN reports relationships with AOP Orphan Pharmaceuticals, Johnson & Johnson, Lung Biotechnology Corporation and United Therapeutics. KT reports relationships with Janssen. MD reports relationships with MSD, Dompe, Ferrer, AOP, and Janssen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naeije, R., Tello, K. & D’Alto, M. Tricuspid Regurgitation: Right Ventricular Volume Versus Pressure Load. Curr Heart Fail Rep 20, 208–217 (2023). https://doi.org/10.1007/s11897-023-00599-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-023-00599-w

Keywords

Navigation