Skip to main content

Advertisement

Log in

Comprehensive and Safe Decongestion in Acutely Decompensated Heart Failure

  • Decompensated Heart Failure (P. Banerjee, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Progressive intravascular, interstitial, and alveolar fluid overload underlies the transition from compensated to acutely decompensated heart failure and loop diuretics are the mainstay of treatment. Adverse effects and resistance to loop diuretics received much attention while the contribution of a depressed cardiac output to diuretic resistance was downplayed.

Recent Findings

Analysis of experience with positive inotropic agents, especially dobutamine, indicates that enhancement of cardiac output is not consistently associated with increased renal blood flow. However, urinary output and renal sodium excretion increase likely due to dobutamine-mediated decrease in renal and systemic reduced activation of sympathetic nervous- and renin–angiotensin–aldosterone system. Mechanical circulatory support with left ventricular assist devices ascertained the contribution of low cardiac output to diuretic resistance and the pathogenesis and progression of kidney disease in acutely decompensated heart failure.

Summary

Diuretic resistance commonly occurs in acutely decompensated heart failure. However, failure to resolve fluid overload despite high doses of loop diuretics should alert to the presence of a low cardiac output state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

ADHF:

Acute decompensated heart failure

AF:

Atrial fibrillation

BMI:

Body mass index

BNP:

B-type natriuretic peptide

BUN:

Blood urea nitrogen

CI:

Cardiac index

CO:

Cardiac output

CRT:

Cardiac resynchronization therapy

DLCO:

Diffusion capacity of carbon monoxide

eGFR:

Estimated glomerular filtration rate

FEV1:

Forced expiratory volume over the first second

FVC:

Forced vital capacity

HF:

Heart failure

HFrEF:

Heart failure with reduced ejection fraction

LA:

Left atrial

LV:

Left ventricular

LVAD:

Left ventricular assist device

LVDD:

Left ventricular diastolic dysfunction

LVOT:

Left ventricular outflow tract

LVSD:

Left ventricular systolic dysfunction

NGAL:

Neutrophil gelatinase–associated lipocalin

OSA:

Obstructive sleep apnea

PAC:

Pulmonary artery catheterization

PAP:

Pulmonary artery pressure

PAWP:

Pulmonary artery wedge pressure

Pcap:

Pulmonary capillary pressure

PH:

Pulmonary hypertension

RBF:

Renal blood flow

RV:

Right ventricle

SGLT2:

Sodium glucose co-transporter 2

SIRS:

Systemic inflammatory response syndrome

WRF:

Worsening renal function

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Shah N, Madanieh R, Alkan M, Dogar MU, Kosmas CE, Vittorio TJ. A perspective on diuretic resistance in chronic congestive heart failure. Ther Adv Cardiovasc Dis. 2017;11(10):271–8. https://doi.org/10.1177/1753944717718717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ter Maaten JM, Rao VS, Hanberg JS, Perry Wilson F, Bellumkonda L, Assefa M, et al. Renal tubular resistance is the primary driver for loop diuretic resistance in acute heart failure. Eur J Heart Fail. 2017;19(8):1014–22. https://doi.org/10.1002/ejhf.757.

    Article  CAS  PubMed  Google Scholar 

  3. Verbrugge FH, Mullens W, Tang WH. Management of cardio-renal syndrome and diuretic resistance. Curr Treat Options Cardiovasc Med. 2016;18(2):11. https://doi.org/10.1007/s11936-015-0436-4.

    Article  PubMed  Google Scholar 

  4. Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R386–96. https://doi.org/10.1152/ajpregu.00026.2019.

    Article  CAS  PubMed  Google Scholar 

  5. Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl (2011). 2013;3(4):368–71. https://doi.org/10.1038/kisup.2013.79

  6. Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603. https://doi.org/10.1002/ejhf.1697. This position statement from the European Heart Failure Association describes the current models for understanding the development of CKD in the setting of heart failure, covering effects of heart failure and treatments on eGFR, sodium handling, and response to treatment.

    Article  PubMed  Google Scholar 

  7. George LK, Koshy SKG, Molnar MZ, Thomas F, Lu JL, Kalantar-Zadeh K et al. Heart failure increases the risk of adverse renal outcomes in patients with normal kidney function. Circ Heart Fail. 2017;10(8). https://doi.org/10.1161/CIRCHEARTFAILURE.116.003825

  8. Damman K, Masson S, Lucci D, Gorini M, Urso R, Maggioni AP, et al. Progression of renal impairment and chronic kidney disease in chronic heart failure: an analysis from GISSI-HF. J Card Fail. 2017;23(1):2–9. https://doi.org/10.1016/j.cardfail.2016.09.006.

    Article  PubMed  Google Scholar 

  9. Lapman PG, Golduber GN, Le Jemtel TH. Heart failure treatment and renal function. Am Heart J. 2004;147(2):193–4. https://doi.org/10.1016/j.ahj.2003.10.003.

    Article  PubMed  Google Scholar 

  10. Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68(3):e7–46. https://doi.org/10.1161/HYP.0000000000000047.

    Article  CAS  PubMed  Google Scholar 

  11. Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol. 2000;278(4):F585–95. https://doi.org/10.1152/ajprenal.2000.278.4.F585.

    Article  CAS  PubMed  Google Scholar 

  12. Njoroge JN, Teerlink JR. Pathophysiology and therapeutic approaches to acute decompensated heart failure. Circ Res. 2021;128(10):1468–86. https://doi.org/10.1161/CIRCRESAHA.121.318186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625–33. https://doi.org/10.1001/jama.294.13.1625.

    Article  PubMed  Google Scholar 

  14. Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208. https://doi.org/10.1016/j.jacc.2016.02.058.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cody RJ, Ljungman S, Covit AB, Kubo SH, Sealey JE, Pondolfino K, et al. Regulation of glomerular filtration rate in chronic congestive heart failure patients. Kidney Int. 1988;34(3):361–7. https://doi.org/10.1038/ki.1988.189.

    Article  CAS  PubMed  Google Scholar 

  16. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126(6):1001–4. https://doi.org/10.1164/arrd.1982.126.6.1001.

    Article  CAS  PubMed  Google Scholar 

  17. Bobbio E, Bollano E, Polte CL, Ekelund J, Rådegran G, Lundgren J, et al. Association between central haemodynamics and renal function in advanced heart failure: a nationwide study from Sweden. ESC Heart Fail. 2022. https://doi.org/10.1002/ehf2.13990.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zelis R, Flaim SF, Liedtke AJ, Nellis SH. Cardiocirculatory dynamics in the normal and failing heart. Annu Rev Physiol. 1981;43:455–76. https://doi.org/10.1146/annurev.ph.43.030181.002323.

    Article  CAS  PubMed  Google Scholar 

  19. Zelis R, Flaim SF. Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis. 1982;24(6):437–59. https://doi.org/10.1016/0033-0620(82)90012-3.

    Article  CAS  PubMed  Google Scholar 

  20. Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R386–96. https://doi.org/10.1152/ajpregu.00026.2019.

    Article  CAS  PubMed  Google Scholar 

  21. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA. 2016;316(6):602–10. https://doi.org/10.1001/jama.2016.10924.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weldegiorgis M, Woodward M. The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: a systematic review and meta-analysis. BMC Nephrol. 2020;21(1):506. https://doi.org/10.1186/s12882-020-02151-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Navaneethan SD, Zoungas S, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, et al. Diabetes management in chronic kidney disease: synopsis of the 2020 KDIGO clinical practice guideline. Ann Intern Med. 2021;174(3):385–94. https://doi.org/10.7326/M20-5938.

    Article  PubMed  Google Scholar 

  24. Somkearti P, Chattakul P, Khamsai S, Limpawattana P, Chindaprasirt J, Chotmongkol V, et al. Predictors of chronic kidney disease in obstructive sleep apnea patients. Multidiscip Respir Med. 2020;15(1):470. https://doi.org/10.4081/mrm.2020.470.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rimke AN, Ahmed SB, Turin TC, Pendharkar SR, Raneri JK, Lynch EJ, et al. Effect of CPAP therapy on kidney function in patients with chronic kidney disease: a pilot randomized controlled trial. Chest. 2021;159(5):2008–19. https://doi.org/10.1016/j.chest.2020.11.052.

    Article  CAS  PubMed  Google Scholar 

  26. Hall JE, doCarmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. https://doi.org/10.1161/CIRCRESAHA.116.305697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–71. https://doi.org/10.1038/nrneph.2016.75.

    Article  CAS  PubMed  Google Scholar 

  28. Boorsma EM, Ter Maaten JM, Voors AA, van Veldhuisen DJ. Renal compression in heart failure: the renal tamponade hypothesis. JACC Heart Fail. 2022;10(3):175–83. https://doi.org/10.1016/j.jchf.2021.12.005.

    Article  PubMed  Google Scholar 

  29. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96. https://doi.org/10.1016/j.jacc.2008.05.068.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhigalov K, Sá MPBO, Arjomandi Rad A, et al. The impact of obesity on left ventricular assist device outcomes. Medicina (Kaunas). 2020;56(11):556. Published 2020 Oct 23. https://doi.org/10.3390/medicina56110556.

  31. Molina EJ, Shah P, Kiernan MS, Cornwell WK, Copeland H, Takeda K, et al. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann Thorac Surg. 2021;111(3):778–92. https://doi.org/10.1016/j.athoracsur.2020.12.038.

    Article  PubMed  Google Scholar 

  32. Butler J, Geisberg C, Howser R, Portner PM, Rogers JG, Deng MC, et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006;81(5):1745–51. https://doi.org/10.1016/j.athoracsur.2005.11.061.

    Article  PubMed  Google Scholar 

  33. Ross DW, Stevens GR, Wanchoo R, Majure DT, Jauhar S, Fernandez HA, et al. Left ventricular assist devices and the kidney. Clin J Am Soc Nephrol. 2018;13(2):348–55. https://doi.org/10.2215/CJN.04670417.

    Article  PubMed  Google Scholar 

  34. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000507.

    Article  PubMed  Google Scholar 

  35. Yalcin YC, Muslem R, Veen KM, Soliman OI, Hesselink DA, Constantinescu AA, et al. Impact of continuous flow left ventricular assist device therapy on chronic kidney disease: a longitudinal multicenter study. J Card Fail. 2020;26(4):333–41. https://doi.org/10.1016/j.cardfail.2020.01.010. A longitudinal study on LVAD recipients that demonstrated improved renal function in the early stages after initial placement of LVAD device and with eventual regression in later stages after LVAD placement.

    Article  PubMed  Google Scholar 

  36. Bartfay SE, Kolsrud O, Wessman P, Dellgren G, Karason K. The trajectory of renal function following mechanical circulatory support and subsequent heart transplantation. ESC Heart Fail. 2022. https://doi.org/10.1002/ehf2.13943.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hasin T, Marmor Y, Kremers W, Topilsky Y, Severson CJ, Schirger JA, et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol. 2013;61(2):153–63. https://doi.org/10.1016/j.jacc.2012.09.041.

    Article  PubMed  Google Scholar 

  38. Farmakis D, Agostoni P, Baholli L, Bautin A, Comin-Colet J, Crespo-Leiro MG, et al. A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: an expert panel consensus. Int J Cardiol. 2019;297:83–90. https://doi.org/10.1016/j.ijcard.2019.09.005.

    Article  PubMed  Google Scholar 

  39. Obi Y, Kim T, Kovesdy CP, Amin AN, Kalantar-Zadeh K. Current and potential therapeutic strategies for hemodynamic cardiorenal syndrome. Cardiorenal Med. 2016;6(2):83–98. https://doi.org/10.1159/000441283.

    Article  CAS  PubMed  Google Scholar 

  40. Sarnak MJ. A patient with heart failure and worsening kidney function. Clin J Am Soc Nephrol. 2014;9(10):1790–8. https://doi.org/10.2215/CJN.11601113.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leier CV, Heban PT, Huss P, Bush CA, Lewis RP. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation. 1978;58(3 Pt 1):466–75. https://doi.org/10.1161/01.cir.58.3.466.

    Article  CAS  PubMed  Google Scholar 

  42. Leier CV. Regional blood flow responses to vasodilators and inotropes in congestive heart failure. Am J Cardiol. 1988;62(8):86E-93E. https://doi.org/10.1016/s0002-9149(88)80019-5.

    Article  CAS  PubMed  Google Scholar 

  43. Sato Y, Matsuzawa H, Eguchi S. Comparative study of effects of adrenaline, dobutamine and dopamine on systemic hemodynamics and renal blood flow in patients following open heart surgery. Jpn Circ J. 1982;46(10):1059–72. https://doi.org/10.1253/jcj.46.1059.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Hesayen A, Parker JD. The effects of dobutamine on renal sympathetic activity in human heart failure. J Cardiovasc Pharmacol. 2008;51(5):434–6. https://doi.org/10.1097/FJC.0b013e3181684026.

    Article  CAS  PubMed  Google Scholar 

  45. Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R386–96. https://doi.org/10.1152/ajpregu.00026.2019.

    Article  CAS  PubMed  Google Scholar 

  46. Gilbert C, Cherney DZ, Parker AB, Mak S, Floras JS, Al-Hesayen A, et al. Hemodynamic and neurochemical determinates of renal function in chronic heart failure. Am J Physiol Regul Integr Comp Physiol. 2016;310(2):R167–75. https://doi.org/10.1152/ajpregu.00190.2015.

    Article  PubMed  Google Scholar 

  47. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82. https://doi.org/10.1093/eurheartj/ehx035.

    Article  CAS  PubMed  Google Scholar 

  48. Lytvyn Y, Burns KD, Testani JM, Lytvyn A, Ambinathan JPN, Osuntokun O, et al. Renal hemodynamics and renin-angiotensin-aldosterone system profiles in patients with heart failure. J Card Fail. 2022;28(3):385–93. https://doi.org/10.1016/j.cardfail.2021.08.015. This study obtained invasive measures of renal hemodynamics RAAS hormones in heart failure patients and followed responses to inotropic support, demonstrating increased RAAS activation in CHF that improved with inotropic support.

    Article  PubMed  Google Scholar 

  49. Lannemyr L, Ricksten SE, Rundqvist B, Andersson B, Bartfay SE, Ljungman C, et al. Differential effects of levosimendan and dobutamine on glomerular filtration rate in patients with heart failure and renal impairment:a randomized double-blind controlled trial. J Am Heart Assoc. 2018;7(16):e008455. https://doi.org/10.1161/JAHA.117.008455.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klein L, Massie BM, Leimberger JD, O’Connor CM, Piña IL, Adams KF, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008;1(1):25–33. https://doi.org/10.1161/CIRCHEARTFAILURE.107.746933.

    Article  CAS  PubMed  Google Scholar 

  51. Hammond DA, Smith MN, Lee KC, Honein D, Quidley AM. Acute decompensated heart failure. J Intensive Care Med. 2018;33(8):456–66. https://doi.org/10.1177/0885066616669494.

    Article  PubMed  Google Scholar 

  52. Melenovsky V, Andersen MJ, Andress K, Reddy YN, Borlaug BA. Lung congestion in chronic heart failure: haemodynamic, clinical, and prognostic implications. Eur J Heart Fail. 2015;17(11):1161–71. https://doi.org/10.1002/ejhf.417.

    Article  CAS  PubMed  Google Scholar 

  53. Jain CC, Tschirren J, Reddy YNV, Melenovsky V, Redfield M, Borlaug BA. Subclinical pulmonary congestion and abnormal hemodynamics in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging. 2022;15(4):629–37. https://doi.org/10.1016/j.jcmg.2021.09.017.

    Article  PubMed  Google Scholar 

  54. Dixon DL, De Pasquale CG, Lawrence MD, Cavallaro E, Rubino V, Bersten AD. Lung fluid clearance in chronic heart failure patients. Int J Cardiol. 2017;244:245–7. https://doi.org/10.1016/j.ijcard.2017.05.096.

    Article  PubMed  Google Scholar 

  55. Stewart GM, Johnson BD, Sprecher DL, Reddy YNV, Obokata M, Goldsmith S, et al. Targeting pulmonary capillary permeability to reduce lung congestion in heart failure: a randomized, controlled pilot trial. Eur J Heart Fail. 2020;22(9):1641–5. https://doi.org/10.1002/ejhf.1809.

    Article  CAS  PubMed  Google Scholar 

  56. Magnussen H, Canepa M, Zambito PE, Brusasco V, Meinertz T, Rosenkranz S. What can we learn from pulmonary function testing in heart failure? Eur J Heart Fail. 2017;19(10):1222–9. https://doi.org/10.1002/ejhf.946.

    Article  PubMed  Google Scholar 

  57. Kawakami R, Nakada Y, Hashimoto Y, Ueda T, Nakagawa H, Nishida T, et al. Prevalence and prognostic significance of pulmonary function test abnormalities in hospitalized patients with acute decompensated heart failure with preserved and reduced ejection fraction. Circ J. 2021;85(9):1426–34. https://doi.org/10.1253/circj.CJ-20-1069.

    Article  PubMed  Google Scholar 

  58. Cuttica MJ, Colangelo LA, Shah SJ, Lima J, Kishi S, Arynchyn A, et al. Loss of lung health from young adulthood and cardiac phenotypes in middle age. Am J Respir Crit Care Med. 2015;192(1):76–85. https://doi.org/10.1164/rccm.201501-0116OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cundrle I, Olson LJ, Johnson BD. Pulmonary limitations in heart failure. Clin Chest Med. 2019;40(2):439–48. https://doi.org/10.1016/j.ccm.2019.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dubé BP, Agostoni P, Laveneziana P. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors. Eur Respir Rev. 2016;25(141):317–32. https://doi.org/10.1183/16000617.0048-2016.

    Article  PubMed  Google Scholar 

  61. Obokata M, Olson TP, Reddy YNV, Melenovsky V, Kane GC, Borlaug BA. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J. 2018;39(30):2810–21. https://doi.org/10.1093/eurheartj/ehy268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chase SC, Wheatley CM, Olson LJ, Beck KC, Wentz RJ, Snyder EM et al. Impact of chronic systolic heart failure on lung structure-function relationships in large airways. Physiol Rep. 2016;4(13). https://doi.org/10.14814/phy2.12867.

  63. Chang HC, Huang WM, Yu WC, Cheng HM, Guo CY, Chiang CE, et al. Prognostic role of pulmonary function in patients with heart failure with reduced ejection fraction. J Am Heart Assoc. 2022;11(7):e023422. https://doi.org/10.1161/JAHA.121.023422.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eckhardt CM, Balte PP, Barr RG, Bertoni AG, Bhatt SP, Cuttica M, et al. Lung function impairment and risk of incident heart failure: the NHLBI pooled cohorts study. Eur Heart J. 2022. https://doi.org/10.1093/eurheartj/ehac205.

    Article  PubMed  Google Scholar 

  65. Enriquez-Sarano M, Rossi A, Seward JB, Bailey KR, Tajik AJ. Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol. 1997;29(1):153–9. https://doi.org/10.1016/s0735-1097(96)00436-6.

    Article  CAS  PubMed  Google Scholar 

  66. Vachiéry JL, Adir Y, Barberà JA, Champion H, Coghlan JG, Cottin V, et al. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D100–8. https://doi.org/10.1016/j.jacc.2013.10.033.

    Article  PubMed  Google Scholar 

  67. Opitz CF, Hoeper MM, Gibbs JS, Kaemmerer H, Pepke-Zaba J, Coghlan JG, et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J Am Coll Cardiol. 2016;68(4):368–78. https://doi.org/10.1016/j.jacc.2016.05.047.

    Article  PubMed  Google Scholar 

  68. Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiéry JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J. 2016;37(12):942–54. https://doi.org/10.1093/eurheartj/ehv512.

    Article  PubMed  Google Scholar 

  69. Verbrugge FH, Guazzi M, Testani JM, Borlaug BA. Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney. Circulation. 2020;142(10):998–1012. https://doi.org/10.1161/CIRCULATIONAHA.119.045409.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Al-Omary MS, Sugito S, Boyle AJ, Sverdlov AL, Collins NJ. Pulmonary hypertension due to left heart disease: diagnosis, pathophysiology, and therapy. Hypertension. 2020;75(6):1397–408. https://doi.org/10.1161/HYPERTENSIONAHA.119.14330.

    Article  CAS  PubMed  Google Scholar 

  71. Maron BA, Kovacs G, Vaidya A, Bhatt DL, Nishimura RA, Mak S, et al. Cardiopulmonary hemodynamics in pulmonary hypertension and heart failure: JACC review topic of the week. J Am Coll Cardiol. 2020;76(22):2671–81. https://doi.org/10.1016/j.jacc.2020.10.007.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Reddy YNV, Borlaug BA. Pulmonary hypertension in left heart disease. Clin Chest Med. 2021;42(1):39–58. https://doi.org/10.1016/j.ccm.2020.11.002. This review summarizes contemporary understanding of pulmonary hypertension in left heart disease with a focus on improving the diagnosis of pre- and post-capillary pulmonary hypertension in left heart failure.

    Article  PubMed  Google Scholar 

  73. Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26. https://doi.org/10.1016/j.jacc.2008.11.051.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Charalampopoulos A, Howard LS, Tzoulaki I, Gin-Sing W, Grapsa J, Wilkins MR, et al. Response to pulmonary arterial hypertension drug therapies in patients with pulmonary arterial hypertension and cardiovascular risk factors. Pulm Circ. 2014;4(4):669–78. https://doi.org/10.1086/678512.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tedford RJ, Hassoun PM, Mathai SC, Girgis RE, Russell SD, Thiemann DR, et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125(2):289–97. https://doi.org/10.1161/CIRCULATIONAHA.111.051540.

    Article  PubMed  Google Scholar 

  76. Vachiéry JL, Tedford RJ, Rosenkranz S, Palazzini M, Lang I, Guazzi M et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019;53(1). https://doi.org/10.1183/13993003.01897-2018.

  77. Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69(2):236–43. https://doi.org/10.1016/j.jacc.2016.10.047.

    Article  PubMed  Google Scholar 

  78. Chatterjee NA, Lewis GD. What is the prognostic significance of pulmonary hypertension in heart failure? Circ Heart Fail. 2011;4(5):541–5. https://doi.org/10.1161/CIRCHEARTFAILURE.111.963785.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, et al. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018;137(17):1796–810. https://doi.org/10.1161/CIRCULATIONAHA.117.031608.

    Article  PubMed  Google Scholar 

  80. Cogliati C, Ceriani E, Gambassi G, De Matteis G, Perlini S, Perrone T, et al. Phenotyping congestion in patients with acutely decompensated heart failure with preserved and reduced ejection fraction: the decongestion during therapy for acute decompensated heart failure in HFpEF vs HFrEF- DRY-OFF study. Eur J Intern Med. 2022;97:69–77. https://doi.org/10.1016/j.ejim.2021.11.010.

    Article  CAS  PubMed  Google Scholar 

  81. Ander DS, Jaggi M, Rivers E, Rady MY, Levine TB, Levine AB, et al. Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department. Am J Cardiol. 1998;82(7):888–91. https://doi.org/10.1016/s0002-9149(98)00497-4.

    Article  CAS  PubMed  Google Scholar 

  82. Tanawuttiwat T, Lande J, Smeets P, Gerritse B, Nazarian S, Guallar E, et al. Atrial fibrillation burden and subsequent heart failure events in patients with cardiac resynchronization therapy devices. J Cardiovasc Electrophysiol. 2020;31(6):1519–26. https://doi.org/10.1111/jce.14444.

    Article  PubMed  Google Scholar 

  83. Andriulli J, Coles J, Hettrick DA. Association between decreased intra-thoracic impedance and ventricular tachyarrhythmias. Int J Cardiol. 2008;123(3):333–4. https://doi.org/10.1016/j.ijcard.2006.11.153.

    Article  PubMed  Google Scholar 

  84. Drozd M, Garland E, Walker AMN, Slater TA, Koshy A, Straw S, Gierula J, Paton M, Lowry J, Sapsford R, Witte KK, Kearney MT, Cubbon RM. Infection-related hospitalization in heart failure with reduced ejection fraction: a prospective observational cohort study. Circ Heart Fail. 2020;13(5):e006746. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006746.

    Article  PubMed  Google Scholar 

  85. Walker AMN, Drozd M, Hall M, Patel PA, Paton M, Lowry J, Gierula J, Byrom R, Kearney L, Sapsford RJ, Witte KK, Kearney MT, Cubbon RM. Prevalence and predictors of sepsis death in patients with chronic heart failure and reduced left ventricular ejection fraction. J Am Heart Assoc. 2018;7(20):e009684. https://doi.org/10.1161/JAHA.118.009684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Njoroge JN, Teerlink JR. Pathophysiology and therapeutic approaches to acute decompensated heart failure. Circ Res. 2021;128(10):1468–86. https://doi.org/10.1161/CIRCRESAHA.121.318186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Antonietta CM, Calvi E, Faggiano A, Maffeis C, Bosisio M, De Stefano M, et al. Impact of loop diuretic on outcomes in patients with heart failure and reduced ejection fraction. Curr Heart Fail Rep. 2022;19(1):15–25. https://doi.org/10.1007/s11897-021-00538-7.

    Article  PubMed  Google Scholar 

  88. Damman K, Kjekshus J, Wikstrand J, Cleland JG, Komajda M, Wedel H, et al. Loop diuretics, renal function and clinical outcome in patients with heart failure and reduced ejection fraction. Eur J Heart Fail. 2016;18(3):328–36. https://doi.org/10.1002/ejhf.462.

    Article  PubMed  Google Scholar 

  89. Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH, et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation. 2018;137(19):2016–28. https://doi.org/10.1161/CIRCULATIONAHA.117.030112.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Valente MA, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O’Connor CM, et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014;35(19):1284–93. https://doi.org/10.1093/eurheartj/ehu065.

    Article  CAS  PubMed  Google Scholar 

  91. Emmens JE, Ter Maaten JM, Matsue Y, Figarska SM, Sama IE, Cotter G, et al. Worsening renal function in acute heart failure in the context of diuretic response. Eur J Heart Fail. 2022;24(2):365–74. https://doi.org/10.1002/ejhf.2384.

    Article  CAS  PubMed  Google Scholar 

  92. Chen JJ, Lee TH, Kuo G, Yen CL, Chen SW, Chu PH, et al. Acute kidney disease after acute decompensated heart failure. Kidney Int Rep. 2022;7(3):526–36. https://doi.org/10.1016/j.ekir.2021.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Horiuchi Y, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Decongestion, kidney injury and prognosis in patients with acute heart failure. Int J Cardiol. 2022;354:29–37. https://doi.org/10.1016/j.ijcard.2022.02.026. A retrospective study on diuretic response and renal tubular damage that shows kidney tubular damage in the setting of adequate decongestion was not associated with worse outcomes, while tubular damage in the absence of adequate decongestion is a bad prognostic sign.

    Article  PubMed  Google Scholar 

  94. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61. https://doi.org/10.1016/S0140-6736(15)00723-0.

    Article  PubMed  Google Scholar 

  95. Angermann CE, Assmus B, Anker SD, Asselbergs FW, Brachmann J, Brett ME, et al. Pulmonary artery pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF). Eur J Heart Fail. 2020;22(10):1891–901. https://doi.org/10.1002/ejhf.1943.

    Article  PubMed  Google Scholar 

  96. Lindenfeld J, Zile MR, Desai AS, Bhatt K, Ducharme A, Horstmanshof D, et al. Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. Lancet. 2021;398(10304):991–1001. https://doi.org/10.1016/S0140-6736(21)01754-2.

    Article  CAS  PubMed  Google Scholar 

  97. Adamson PB, Abraham WT, Stevenson LW, Desai AS, Lindenfeld J, Bourge RC, Bauman J. Pulmonary artery pressure-guided heart failure management reduces 30-day readmissions. Circ Heart Fail. 2016;9(6):e002600. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002600.

    Article  PubMed  Google Scholar 

  98. Shavelle DM, Desai AS, Abraham WT, Bourge RC, Raval N, Rathman LD, et al. Lower rates of heart failure and all-cause hospitalizations during pulmonary artery pressure-guided therapy for ambulatory heart failure: one-year outcomes from the CardioMEMS post-approval study. Circ Heart Fail. 2020;13(8):e006863. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006863.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol. 2006;47(1):1–8. https://doi.org/10.1016/j.jacc.2005.07.067.

    Article  PubMed  Google Scholar 

  100. Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J. 1987;57(1):17–22. https://doi.org/10.1136/hrt.57.1.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ceriani E, Casazza G, Peta J, Torzillo D, Furlotti S, Cogliati C. Residual congestion and long-term prognosis in acutely decompensated heart failure patients. Intern Emerg Med. 2020;15(4):719–24. https://doi.org/10.1007/s11739-020-02326-y.

    Article  CAS  PubMed  Google Scholar 

  102. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713–22. https://doi.org/10.1002/ejhf.1713.

    Article  CAS  PubMed  Google Scholar 

  103. Boorsma EM, Ter Maaten JM, Damman K, Dinh W, Gustafsson F, Goldsmith S, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment. Nat Rev Cardiol. 2020;17(10):641–55. https://doi.org/10.1038/s41569-020-0379-7.

    Article  PubMed  Google Scholar 

  104. Mullens W, Martens P, Forouzan O, Dauw J, Vercammen J, Luwel E, et al. Effects of dapagliflozin on congestion assessed by remote pulmonary artery pressure monitoring. ESC Heart Fail. 2020;7(5):2071–3. https://doi.org/10.1002/ehf2.12850.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Stencel.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Decompensated Heart Failure.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stencel, J., Rajapreyar, I., Samson, R. et al. Comprehensive and Safe Decongestion in Acutely Decompensated Heart Failure. Curr Heart Fail Rep 19, 364–374 (2022). https://doi.org/10.1007/s11897-022-00573-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00573-y

Keywords

Navigation