Skip to main content

Advertisement

Log in

Chronic Chagas Disease—the Potential Role of Reinfections in Cardiomyopathy Pathogenesis

  • Comorbidities of Hearth Failure (J. Tromp, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Chagas disease is a neglected anthropozoonosis of global importance with significant cardiovascular-associated mortality. This review focuses on the Trypanosoma cruzi reinfections’ role in chronic Chagas cardiomyopathy pathogenesis. We discuss and summarize the available data related to pathology, pathogenesis, diagnosis, and treatment of reinfections.

Recent Findings

Reinfections influence the genetic and regional diversity of T. cruzi, tissue tropism, modulation of the host’s immune system response, clinical manifestations, the risk for congenital infections, differences in diagnostics performances, response to antiparasitic therapy, and the natural history of the disease. Animal models suggest that reinfections lead to worse outcomes and increased mortality, while other studies showed an association between reinfections and lower parasitemia levels and subsequent infection protection. In some regions, the human risk of reinfections is 14% at 5 years. Evidence has shown that higher anti-T. cruzi antibodies are correlated with an increased rate of cardiomyopathy and death, suggesting that a higher parasite exposure related to reinfections may lead to worse outcomes.

Summary

Based on the existing literature, reinfections may play a role in developing and exacerbating chronic Chagas cardiomyopathy and are linked to worse outcomes. Control efforts should be redirected to interventions that address structural poverty for the successful and sustainable prevention of Chagas disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391:82–94.

    Article  PubMed  Google Scholar 

  2. Urdaneta-Morales S. Chagasâ€TM disease: an emergent urban zoonosis. The Caracas Valley (Venezuela) as an epidemiological model. Front Public Health. 2014. https://doi.org/10.3389/fpubh.2014.00265.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, Barnes JC, Dotson EM. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J Med Entomol. 2013;50:1126–39.

    Article  PubMed  Google Scholar 

  4. Mills RM. Chagas disease: epidemiology and barriers to treatment. Am J Med. 2020;133:1262–5.

    Article  PubMed  Google Scholar 

  5. Shikanai-Yasuda MA, Carvalho NB. Oral transmission of Chagas disease. Clin Infect Dis. 2012;54:845–52.

    Article  PubMed  Google Scholar 

  6. Luquetti AO, do Nascimento Tavares SB, da Rocha Siriano L, de Oliveira RA, Campos DE, de Morais CA, de Oliveira EC. Congenital transmission of Trypanosoma cruzi in central Brazil. A study of 1,211 individuals born to infected mothers. Mem Inst Oswaldo Cruz. 2015;110:369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alarcón de Noya B, Díaz-Bello Z, Colmenares C, et al. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis. 2010;201:1308–15.

    Article  PubMed  Google Scholar 

  8. Cancino-Faure B, Fisa R, Riera C, Bula I, Girona-Llobera E, Jimenez-Marco T. Evidence of meaningful levels of Trypanosoma cruziin platelet concentrates from seropositive blood donors. Transfusion. 2015;55:1249–55.

    Article  CAS  PubMed  Google Scholar 

  9. Huprikar S, Bosserman E, Patel G, et al. Donor-derived Trypanosoma cruzi infection in solid organ recipients in the United States, 2001–2011. Am J Transplant. 2013;13:2418–25.

    Article  CAS  PubMed  Google Scholar 

  10. Herwaldt BL. Laboratory-acquired parasitic infections from accidental exposures. Clin Microbiol Rev. 2001;14:659–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manne-Goehler J, Umeh CA, Montgomery SP, Wirtz VJ. Estimating the burden of Chagas disease in the United States. PLoS Negl Trop Dis. 2016;10:e0005033.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chagas disease in Latin America: an epidemiological update based on 2010 estimates [press release]. World Health Organization, February 6, 2015 2015.

  13. Bern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis. 2009;49:e52–4.

    Article  PubMed  Google Scholar 

  14. Tanowitz HB, Kirchhoff LV, Simon D, Morris SA, Weiss LM, Wittner M. Chagas’ disease. Clin Microbiol Rev. 1992;5:400–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benziger CP, do Carmo GAL, Ribeiro ALP. Chagas cardiomyopathy: clinical presentation and management in the Americas. Cardiol Clin. 2017;35:31–47.

    Article  PubMed  Google Scholar 

  16. Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and pathogenesis of Chagas heart disease. Annu Rev Pathol. 2019;14:421–47.

    Article  CAS  PubMed  Google Scholar 

  17. Burgos JM, Diez M, Vigliano C, et al. Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis. 2010;51:485–95.

    Article  CAS  PubMed  Google Scholar 

  18. Burgos JM, Begher S, Silva HMV, Bisio M, Duffy T, Levin MJ, Macedo AM, Schijman AG. Molecular identification of Trypanosoma cruzi I tropism for central nervous system in Chagas reactivation due to AIDS. Am J Trop Med Hyg. 2008;78:294–7.

    Article  CAS  PubMed  Google Scholar 

  19. Chadalawada S, Sillau S, Archuleta S, et al. Risk of chronic cardiomyopathy Among patients with the acute phase or indeterminate form of chagas disease: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e2015072. This study evaluated the risk of chronic Chagas cardiomyopathy among asymptomatic patients with the indeterminate form. There is a significant annual risk of cardiomyopathy of 2% among asymptomatic patients.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borges DC, Araújo NM, Cardoso CR, LazoChica JE. Different parasite inocula determine the modulation of the immune response and outcome of experimental Trypanosoma cruzi infection. Immunology. 2013;138:145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chadalawada S, Rassi A Jr, Samara O, et al. Mortality risk in chronic Chagas cardiomyopathy: a systematic review and meta-analysis. ESC Heart Fail. 2021;8:5466–81. This study evaluated the mortality risk among patients with chronic Chagas cardiomyopathy. There is a substantial annual mortality risk of 8%.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shen L, Ramires F, Martinez F, et al. Contemporary characteristics and outcomes in Chagasic Heart Failure compared with other nonischemic and ischemic cardiomyopathy. Circ Heart Fail. 2017. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004361.

    Article  PubMed  Google Scholar 

  23. Perna ER, Barbagelata A, Grinfeld L, García Ben M, Címbaro Canella JP, Bayol PA, Sosa Liprandi A. Overview of acute decompensated heart failure in Argentina: lessons learned from 5 registries during the last decade. Am Heart J. 2006;151:84–91.

    Article  PubMed  Google Scholar 

  24. González-Zambrano H, Amaya-Tapia G, Franco-Ramos MC, López León-Murguía OJ. Prevalence of Chagas heart disease in dilated cardiomyopathy. Arch Cardiol Mex. 2020;91:50–7.

    PubMed  PubMed Central  Google Scholar 

  25. González-Zambrano H, Amaya-Tapia G, Franco-Ramos MC, López León-Murguía OJ (2021) Prevalence of Chagas heart disease in dilated cardiomyopathy. Archivos de cardiologia de Mexico (English ed Internet). https://doi.org/10.24875/acme.m21000188.

  26. Torrico F, Vega CA, Suarez E, Tellez T, Brutus L, Rodriguez P, Torrico M-C, Schneider D, Truyens C, Carlier Y. Are maternal re-infections with Trypanosoma cruzi associated with higher morbidity and mortality of congenital Chagas disease? Trop Med Int Health. 2006;11:628–35.

    Article  PubMed  Google Scholar 

  27. Bowman NM, Balasubramanian S, Gilman RH, et al. Deep sequencing to detect diversity of Trypanosoma cruzi infection in patients coinfected with human immunodeficiency virus and Chagas disease. J Infect Dis. 2022;225:243–7.

    Article  CAS  PubMed  Google Scholar 

  28. Samuels AM, Clark EH, Galdos-Cardenas G, et al. Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco. PLoS Negl Trop Dis. 2013;7:e2358.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tomasini N, Ragone PG, Gourbière S, Aparicio JP, Diosque P. Epidemiological modeling of Trypanosoma cruzi: low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans. PLoS Comput Biol. 2017;13:e1005532. Study evaluated the anticipated Chagas re-infection rates in a rural community in Argentina.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodríguez-Morales AJ, Von A, Franco-Paredes C. Achievements and challenges in controlling Chagas disease. Bol Med Hosp Infant Mex. 2011;68:101–9.

    Google Scholar 

  31. Mott KE, de Oliveira TS, Sherlock I, Morrow RH, Hoff R, Muniz TM, Lehman JS, Draper CC. House construction, triatomine distribution, and household distribution of seroreactivity to Trypanosoma Cruzi in a rural community in northeast Brazil *,†. Am J Trop Med Hyg. 1978;27:1116–22.

    Article  CAS  PubMed  Google Scholar 

  32. Coura JR. Chagas disease: control, elimination and eradication. Is it possible? Mem Inst Oswaldo Cruz. 2013;108:962–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guhl F, Ramírez JD. Poverty, migration, and Chagas disease. Curr Trop Med Rep. 2021;8:52–8.

    Article  Google Scholar 

  34. Coura JR, Borges-Pereira J. Chagas disease: 100 years after its discovery. A systemic review Acta Trop. 2010;115:5–13.

    Article  PubMed  Google Scholar 

  35. Coura JR. Transmissão da infecção chagásica por via oral na história natural da doença de Chagas. Rev Soc Bras Med Trop. 2006;39:113–7.

    PubMed  Google Scholar 

  36. Schmunis GA. Epidemiology of Chagas disease in non-endemic countries: the role of international migration. Mem Inst Oswaldo Cruz. 2007;102(Suppl 1):75–85.

    Article  PubMed  Google Scholar 

  37. Tamayo LD, Guhl F, Vallejo GA, Ramírez JD. The effect of temperature increase on the development of Rhodnius prolixus and the course of Trypanosoma cruzi metacyclogenesis. PLoS Negl Trop Dis. 2018;12:e0006735.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brener Z, Andrade ZA, Barral-Netto M,eds.Trypanosoma cruzi e Doenc¸a de Chagas. 2nd ed. Rio de Janeiro: Editora Guanabara Koogan, 2000:344–78.

  39. Dias JCP, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97:603–12.

    Article  CAS  PubMed  Google Scholar 

  40. Kaplinski M, Jois M, Galdos-Cardenas G, et al. Sustained domestic vector exposure is associated with increased Chagas cardiomyopathy risk but decreased parasitemia and congenital transmission risk among young women in Bolivia. Clin Infect Dis. 2015;61:918–26.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roellig DM, Ellis AE, Yabsley MJ. Oral transmission of Trypanosoma cruzi with opposing evidence for the theory of carnivory. J Parasitol. 2009;95:360–4.

    Article  PubMed  Google Scholar 

  42. Izeta-Alberdi A, Ibarra-Cerdeña CN, Moo-Llanes DA, Ramsey JM. Geographical, landscape and host associations of Trypanosoma cruzi DTUs and lineages. Parasit Vectors. 2016. https://doi.org/10.1186/s13071-016-1918-2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. De Pablos LM, Osuna A. Multigene families in Trypanosoma cruzi and their role in infectivity. Infect Immun. 2012;80:2258–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zingales B, Miles MA, Campbell DA, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012;12:240–53.

    Article  PubMed  Google Scholar 

  45. Ribeiro G Jr, Gurgel-Gonçalves R, Reis RB, Santos CGSD, Amorim A, Andrade SG, Reis MG. Frequent house invasion of Trypanosoma cruzi-infected triatomines in a suburban area of Brazil. PLoS Negl Trop Dis. 2015;9:e0003678.

    Article  PubMed  Google Scholar 

  46. Ortiz S, Villarroel R, Cancino B, Jercic MI, Solari A. Trypanosoma cruzi discrete typing units in patients of Chagas disease and Triatoma infestans after insecticide spraying in Chile. International Journal of Environmental and Agriculture Research. 2017;3:01–8.

    Article  Google Scholar 

  47. Cohen JE, Gürtler RE. Modeling household transmission of American trypanosomiasis. Science. 2001;293:694–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gürtler RE, Cecere MC, Lauricella MA, Petersen RM, Chuit R, Segura EL, Cohen JE. Incidence of trypanosoma cruzi infection among children following domestic reinfestation after insecticide spraying in rural northwestern Argentina. Am J Trop Med Hyg. 2005;73:95–103.

    Article  PubMed  Google Scholar 

  49. Dumonteil E, Nouvellet P, Rosecrans K, Ramirez-Sierra MJ, Gamboa-León R, Cruz-Chan V, Rosado-Vallado M, Gourbière S. Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico. PLoS Negl Trop Dis. 2013;7:e2466.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mott KE, Muniz TM, Mota EA, Hoff R, Sherlock I, Draper CC, Oliveira TS. Trypanosoma cruzi infection in dogs and cats and household seroreactivity to T. cruzi in a rural community in northeast Brazil *,†. Am J Trop Med Hyg. 1978;27:1123–7.

    Article  CAS  PubMed  Google Scholar 

  51. Gürtler RE, Cecere MC, Lauricella MA, Cardinal MV, Kitron U, Cohen JE. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology. 2007;134:69–82.

    Article  PubMed  Google Scholar 

  52. Yeo M, Acosta N, Llewellyn M, et al. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol. 2005;35:225–33.

    Article  CAS  PubMed  Google Scholar 

  53. Lewis MD, Kelly JM. Putting infection dynamics at the heart of Chagas disease. Trends Parasitol. 2016;32:899–911.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mateus J, Pérez-Antón E, Lasso P, et al. Antiparasitic treatment induces an improved CD8+ T cell response in chronic Chagasic patients. J Immunol. 2017;198:3170–80.

    Article  CAS  PubMed  Google Scholar 

  55. Andrade ZA. Immunopathology of Chagas disease. Mem Inst Oswaldo Cruz. 1999;94(Suppl 1):71–80.

    Article  PubMed  Google Scholar 

  56. Bermejo DA, AmezcuaVesely MC, Khan M, et al. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology. 2011;132:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rossi MA, Ramos SG, Bestetti RB. Chagas’ heart disease: clinical-pathological correlation. Front Biosci. 2003;8:e94-109.

    Article  PubMed  Google Scholar 

  58. Marcon GEB, de Albuquerque DM, Batista AM, Andrade PD, Almeida EA, Guariento ME, Teixeira MAB, Costa SCB. Trypanosoma cruzi: parasite persistence in tissues in chronic chagasic Brazilian patients. Mem Inst Oswaldo Cruz. 2011;106:85–91.

    Article  CAS  PubMed  Google Scholar 

  59. Goldstein AM, Thapar N, Karunaratne TB, De Giorgio R. Clinical aspects of neurointestinal disease: pathophysiology, diagnosis, and treatment. Dev Biol. 2016;417:217–28.

    Article  CAS  PubMed  Google Scholar 

  60. Bonney KM, Taylor JM, Daniels MD, Epting CL, Engman DM. Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS One. 2011;6:e14571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nunes MCP, Beaton A, Acquatella H, et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation. 2018;138:e169–209.

    Article  PubMed  Google Scholar 

  62. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115:1109–23.

    Article  PubMed  Google Scholar 

  63. Lauria-Pires L, Teixeira AR. Superinfections with genetically characterized Trypanosoma cruzi clones did not aggravate morbidity and mortality in BALB/c mice. J Parasitol. 1997;83:819–24.

    Article  CAS  PubMed  Google Scholar 

  64. Machado EM, Fernandes AJ, Murta SM, Vitor RW, Camilo DJ Jr, Pinheiro SW, Lopes ER, Adad SJ, Romanha AJ, Pinto Dias JC. A study of experimental reinfection by Trypanosoma cruzi in dogs. Am J Trop Med Hyg. 2001;65:958–65.

    Article  CAS  PubMed  Google Scholar 

  65. Bustamante JM, Rivarola HW, Fernández AR, Enders JE, Fretes R, Palma JA, Paglini-Oliva PA. Trypanosoma cruzi reinfections in mice determine the severity of cardiac damage. Int J Parasitol. 2002;32:889–96.

    Article  PubMed  Google Scholar 

  66. Bustamante JM, Novarese M, Rivarola HW, Lo Presti MS, Fernández AR, Enders JE, Fretes R, Paglini-Oliva PA. Reinfections and Trypanosoma cruzi strains can determine the prognosis of the chronic chagasic cardiopathy in mice. Parasitol Res. 2007;100:1407–10.

    Article  PubMed  Google Scholar 

  67. Andrade SG, Campos RF, Sobral KSC, Magalhães JB, Pereira Guedes RS, Guerreiro ML. Reinfections with strains of Trypanosoma cruzi, of different biodemes as a factor of aggravation of myocarditis and myositis in mice. Rev Soc Bras Med Trop. 2006;39:1–8.

    Article  PubMed  Google Scholar 

  68. Presti MSL, Lo Presti MS, Esteves BH, et al. Circulating Trypanosoma cruzi populations differ from those found in the tissues of the same host during acute experimental infection. Acta Trop. 2014;133:98–109.

    Article  PubMed  Google Scholar 

  69. Reis Machado J, Silva MV, Borges DC, da Silva CA, Ramirez LE, dos Reis MA, Castellano LR, Rodrigues V, Rodrigues DBR. Immunopathological aspects of experimental Trypanosoma cruzi reinfections. Biomed Res Int. 2014;2014:648715.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Perez CJ, Thompson RCA, Keatley SK, Walsh AL, Lymbery AJ. The effect of reinfection and mixed Trypanosoma cruzi infections on disease progression in mice. Acta Trop. 2018;178:107–14.

    Article  PubMed  Google Scholar 

  71. Dias GB, Gruendling AP, Araújo SM, Gomes ML, de Omelas Toledo MJ. Evolution of infection in mice inoculated by the oral route with different developmental forms of Trypanosoma cruzi I and II. Exp Parasitol. 2013;135:511–7.

    Article  PubMed  Google Scholar 

  72. Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol. 2016;18:1429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. del Puerto R, Nishizawa JE, Kikuchi M, et al. Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of Chagas disease in Bolivia. PLoS Negl Trop Dis. 2010;4:e687.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rodriguez Angulo HO, Santi-Rocca JS, Fortes AJ, Guerrero N, Girones N, Fresno M, Laboratorio de Activacion del Sistema immune (2013) Trypanosoma cruzi strains belonging to distinct DTU causes different myocarditis patterns in infected mice. Eur Heart J 34:P3873–P3873.

  75. Rodriguez HO, Guerrero NA, Fortes A, Santi-Rocca J, Gironès N, Fresno M. Trypanosoma cruzi strains cause different myocarditis patterns in infected mice. Acta Trop. 2014;139:57–66.

    Article  PubMed  Google Scholar 

  76. dos Santos DM, Talvani A, da Mata Guedes PM, Machado-Coelho GLL, de Lana M, Bahia MT. Trypanosoma cruzi: genetic diversity influences the profile of immunoglobulins during experimental infection. Exp Parasitol. 2009;121:8–14.

    Article  PubMed  Google Scholar 

  77. Llaguno M, da Silva MV, Helmo FR, et al. IgG subclass analysis in patients with Chagas disease 4 years after benznidazole treatment. Acta Parasitol. 2021;66:1499–509. The study team demonstrated that after four years of treatment with benznidazole, the pattern of IgG and subsets changes. Also noted an increased IgG1 and decreased IgG3 in patients with cardiomyopathy and exacerbated clinical forms.

    Article  CAS  PubMed  Google Scholar 

  78. Nunes MCP, Buss LF, Silva JLP, et al. Incidence and predictors of progression to Chagas cardiomyopathy: long-term follow-up of Trypanosoma cruzi-seropositive individuals. Circulation. 2021;144:1553–66. This study showed that higher antibodies against T.cruzi are associated with increased rates of cardiomyopathy and increased mortality, suggesting that higher parasite exposure changes the morbidity and mortality of this condition.

    Article  CAS  PubMed  Google Scholar 

  79. Burgos JM, Altcheh J, Petrucelli N, Bisio M, Levin MJ, Freilij H, Schijman AG. Molecular diagnosis and treatment monitoring of congenital transmission of Trypanosoma cruzi to twins of a triplet delivery. Diagn Microbiol Infect Dis. 2009;65:58–61.

    Article  CAS  PubMed  Google Scholar 

  80. Hochberg NS, Wheelock A, Hamer DH, Marcus R, Nolan MS, Meymandi S, Gilman RH. Chagas disease in the United States: a perspective on diagnostic testing limitations and next steps. Am J Trop Med Hyg. 2021;104:800–4.

    PubMed  PubMed Central  Google Scholar 

  81. Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG. 2014;121:22–33.

    Article  CAS  PubMed  Google Scholar 

  82. Pecoul B, Batista C, Stobbaerts E, et al. The BENEFIT Trial: where do we go from here? PLoS Negl Trop Dis. 2016;10:e0004343.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Morillo CA, Echeverria LE. New treatment regimens for Chagas disease: light at the end of the tunnel? Lancet Infect Dis. 2021;21:1057–8.

    Article  PubMed  Google Scholar 

  84. Bustamante J, Tarleton R. Reaching for the Holy Grail: insights from infection/cure models on the prospects for vaccines for Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz. 2015;110:445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Teston APM, Monteiro WM, Reis D, Bossolani GDP, Gomes ML, de Araújo SM, Bahia MT, Barbosa MGV, Toledo MJO. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013;18:85–95.

    Article  CAS  PubMed  Google Scholar 

  86. Francolino SS, Antunes AF, Talice R, Rosa R, Selanikio J, de Rezende JM, Romanha AJ, Dias JCP. New evidence of spontaneous cure in human Chagas’ disease. Rev Soc Bras Med Trop. 2003;36:103–7.

    Article  PubMed  Google Scholar 

  87. Dias JCP, Dias E, Filho OM, Vitelli-Avelar D, Correia D, Lages E, Prata A. Further evidence of spontaneous cure in human Chagas disease. Rev Soc Bras Med Trop. 2008;41:505–6.

    Article  PubMed  Google Scholar 

  88. Bertocchi GL, Vigliano CA, Lococo BG, Petti MA, Viotti RJ. Clinical characteristics and outcome of 107 adult patients with chronic Chagas disease and parasitological cure criteria. Trans R Soc Trop Med Hyg. 2013;107:372–6.

    Article  PubMed  Google Scholar 

  89. Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373:1295–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés F. Henao-Martínez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Comorbidities of Heart Failure.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivo Freites, C., Sy, H., Gharamti, A. et al. Chronic Chagas Disease—the Potential Role of Reinfections in Cardiomyopathy Pathogenesis. Curr Heart Fail Rep 19, 279–289 (2022). https://doi.org/10.1007/s11897-022-00568-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00568-9

Keywords

Navigation