Skip to main content

Advertisement

Log in

All You Need Is Sleep: the Effects of Sleep Apnea and Treatment Benefits in the Heart Failure Patient

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (A. Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recognition and treatment of sleep apnea is an important but easily overlooked aspect of care in the heart failure patient. This review summarizes the data behind the recommendations in current practice guidelines and highlights recent developments in treatment options.

Recent Findings

Neuromodulation using hypoglossal nerve stimulation has been increasingly used for treatment of OSA; however, it has not been studied in the heart failure population. Alternatively, phrenic nerve stimulation for treatment of CSA is effective for heart failure patients, and cardiac resynchronization therapy can be effective in improving CSA in pacing-induced cardiomyopathy.

Summary

In patients suspected to have sleep apnea, polysomnography is recommended to better understand the prognosis and treatment options. Positive airway pressure is the standard treatment for sleep apnea; however, neurostimulation can be especially effective in those with predominantly central events. Understanding the pathophysiology of sleep apnea can guide further management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Javaheri S. Sleep disorders in systolic heart failure: a prospective study of 100 male patients. The final report. Int J Cardiol. 2006;106(1):21–8. https://doi.org/10.1016/j.ijcard.2004.12.068.

    Article  PubMed  Google Scholar 

  2. • Javaheri S, Brown LK, Abraham WT, Khayat R. Apneas of heart failure and phenotype-guided treatments: part one: OSA. Chest. 2020;157(2):394–402. https://doi.org/10.1016/j.chest.2019.02.407. This review was written by leaders in the field, clearly explaining a phenotypic approach to management of OSA in heart failure patients.

  3. Wang H, Parker JD, Newton GE, Floras JS, Mak S, Chiu KL, et al. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol. 2007;49(15):1625–31. https://doi.org/10.1016/j.jacc.2006.12.046.

    Article  PubMed  Google Scholar 

  4. Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99(11):1435–40. https://doi.org/10.1161/01.cir.99.11.1435.

    Article  CAS  PubMed  Google Scholar 

  5. Hanly PJ, Zuberi-Khokhar NS. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153(1):272–6. https://doi.org/10.1164/ajrccm.153.1.8542128.

    Article  CAS  PubMed  Google Scholar 

  6. Brack T, Thuer I, Clarenbach CF, Senn O, Noll G, Russi EW, et al. Daytime Cheyne-Stokes respiration in ambulatory patients with severe congestive heart failure is associated with increased mortality. Chest. 2007;132(5):1463–71. https://doi.org/10.1378/chest.07-0121.

    Article  PubMed  Google Scholar 

  7. Khayat R, Abraham W, Patt B, Brinkman V, Wannemacher J, Porter K, et al. Central sleep apnea is a predictor of cardiac readmission in hospitalized patients with systolic heart failure. J Card Fail. 2012;18(7):534–40. https://doi.org/10.1016/j.cardfail.2012.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khayat R, Jarjoura D, Porter K, Sow A, Wannemacher J, Dohar R, et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J. 2015;36(23):1463–9. https://doi.org/10.1093/eurheartj/ehu522.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aurora RN, Caffo B, Crainiceanu C, Punjabi NM. Correlating subjective and objective sleepiness: revisiting the association using survival analysis. Sleep. 2011;34(12):1707–14. https://doi.org/10.5665/sleep.1442.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arzt M, Young T, Finn L, Skatrud JB, Ryan CM, Newton GE, et al. Sleepiness and sleep in patients with both systolic heart failure and obstructive sleep apnea. Arch Intern Med. 2006;166(16):1716–22. https://doi.org/10.1001/archinte.166.16.1716.

    Article  PubMed  Google Scholar 

  11. Mehra R, Wang L, Andrews N, Tang WHW, Young JB, Javaheri S, et al. Dissociation of objective and subjective daytime sleepiness and biomarkers of systemic inflammation in sleep-disordered breathing and systolic heart failure. J Clin Sleep Med. 2017;13(12):1411–22. https://doi.org/10.5664/jcsm.6836.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Laugsand LE, Strand LB, Platou C, Vatten LJ, Janszky I. Insomnia and the risk of incident heart failure: a population study. Eur Heart J. 2014;35(21):1382–93. https://doi.org/10.1093/eurheartj/eht019.

    Article  PubMed  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):E147–239. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  14. Richard B, Berry SFQ, Abreu AR. Marietta L. Bibbs, Lourdes DelRosso, Susan M. Harding, Molly-Min Mao, David T. Plante, Mark R Pressman, Matthew M.Troester, Bradley V. Vaughn. The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications. Darien, Illinois: American Academy of. Sleep Med. 2020.

  15. Aurora RN, Patil SP, Punjabi NM. Portable sleep monitoring for diagnosing sleep apnea in hospitalized patients with heart failure. Chest. 2018;154(1):91–8. https://doi.org/10.1016/j.chest.2018.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kauta SR, Keenan BT, Goldberg L, Schwab RJ. Diagnosis and treatment of sleep disordered breathing in hospitalized cardiac patients: a reduction in 30-day hospital readmission rates. J Clin Sleep Med. 2014;10(10):1051–9. https://doi.org/10.5664/jcsm.4096.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bucca CB, Brussino L, Battisti A, Mutani R, Rolla G, Mangiardi L, et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest. 2007;132(2):440–6. https://doi.org/10.1378/chest.07-0311.

    Article  PubMed  Google Scholar 

  18. Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am Coll Cardiol. 2017;69(7):841–58. https://doi.org/10.1016/j.jacc.2016.11.069.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Costanzo MR. Central sleep apnea in patients with heart failure—how to screen, how to treat. Curr Heart Fail Rep. 2020;17(5):277–87. https://doi.org/10.1007/s11897-020-00472-0.

    Article  PubMed  Google Scholar 

  20. Hanly P, Zuberi N, Gray R. Pathogenesis of Cheyne-Stokes respiration in patients with congestive heart failure. Relationship to arterial PCO2. Chest. 1993;104(4):1079–84. https://doi.org/10.1378/chest.104.4.1079.

    Article  CAS  PubMed  Google Scholar 

  21. Naughton M, Benard D, Tam A, Rutherford R, Bradley TD. Role of hyperventilation in the pathogenesis of central sleep apneas in patients with congestive heart failure. Am Rev Respir Dis. 1993;148(2):330–8. https://doi.org/10.1164/ajrccm/148.2.330.

    Article  CAS  PubMed  Google Scholar 

  22. Spaak J, Egri ZJ, Kubo T, Yu E, Ando SI, Kaneko Y, et al. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension. 2005;46(6):1327–32. https://doi.org/10.1161/01.HYP.0000193497.45200.66.

    Article  CAS  PubMed  Google Scholar 

  23. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91(6):1725–31. https://doi.org/10.1161/01.cir.91.6.1725.

    Article  CAS  PubMed  Google Scholar 

  24. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126(12):1495–510. https://doi.org/10.1161/CIRCULATIONAHA.111.070813.

    Article  PubMed  Google Scholar 

  25. • Javaheri S, Brown LK, Khayat RN. Update on apneas of heart failure with reduced ejection fraction: emphasis on the physiology of treatment: Part 2: Central Sleep Apnea. Chest. 2020;157(6):1637–46. https://doi.org/10.1016/j.chest.2019.12.020. This review was written by leaders in the field, clearly explaining a phenotypic approach to management of CSA in heart failure patients.

  26. Epstein LJ, Kristo D, Strollo PJ Jr, Friedman N, Malhotra A, Patil SP, et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009;5(3):263–76.

    Article  Google Scholar 

  27. Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst Rev. 2006;3:CD001106. https://doi.org/10.1002/14651858.CD001106.pub3.

    Article  Google Scholar 

  28. Engleman HM, Martin SE, Deary IJ, Douglas NJ. Effect of continuous positive airway pressure treatment on daytime function in sleep apnoea/hypopnoea syndrome. Lancet. 1994;343(8897):572–5. https://doi.org/10.1016/s0140-6736(94)91522-9.

    Article  CAS  PubMed  Google Scholar 

  29. Egea CJ, Aizpuru F, Pinto JA, Ayuela JM, Ballester E, Zamarron C, et al. Cardiac function after CPAP therapy in patients with chronic heart failure and sleep apnea: a multicenter study. Sleep Med. 2008;9(6):660–6. https://doi.org/10.1016/j.sleep.2007.06.018.

    Article  PubMed  Google Scholar 

  30. Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348(13):1233–41. https://doi.org/10.1056/NEJMoa022479.

    Article  PubMed  Google Scholar 

  31. Bradley TD, Logan AG, Kimoff RJ, Series F, Morrison D, Ferguson K, et al. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005;353(19):2025–33. https://doi.org/10.1056/NEJMoa051001.

    Article  CAS  PubMed  Google Scholar 

  32. Arzt M, Floras JS, Logan AG, Kimoff RJ, Series F, Morrison D, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure: a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure Trial (CANPAP). Circulation. 2007;115(25):3173–80. https://doi.org/10.1161/CIRCULATIONAHA.106.683482.

    Article  PubMed  Google Scholar 

  33. Javaheri S. Effects of continuous positive airway pressure on sleep apnea and ventricular irritability in patients with heart failure. Circulation. 2000;101(4):392–7. https://doi.org/10.1161/01.cir.101.4.392.

    Article  CAS  PubMed  Google Scholar 

  34. Teschler H, Dohring J, Wang YM, Berthon-Jones M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med. 2001;164(4):614–9. https://doi.org/10.1164/ajrccm.164.4.9908114.

    Article  CAS  PubMed  Google Scholar 

  35. Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146(2):514–23. https://doi.org/10.1378/chest.13-1776.

    Article  PubMed  Google Scholar 

  36. Sharma BK, Bakker JP, McSharry DG, Desai AS, Javaheri S, Malhotra A. Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: a systematic review and meta-analysis. Chest. 2012;142(5):1211–21. https://doi.org/10.1378/chest.12-0815.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373(12):1095–105. https://doi.org/10.1056/NEJMoa1506459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Medicine AAoS. Special Safety Notice: ASV therapy for central sleep apnea patients with heart failure. 2015.

  39. Willson GN, Wilcox I, Piper AJ, Flynn WE, Norman M, Grunstein RR, et al. Noninvasive pressure preset ventilation for the treatment of Cheyne-Stokes respiration during sleep. Eur Respir J. 2001;17(6):1250–7. https://doi.org/10.1183/09031936.01.99086101.

    Article  CAS  PubMed  Google Scholar 

  40. Kasai T, Narui K, Dohi T, Ishiwata S, Yoshimura K, Nishiyama S, et al. Efficacy of nasal bi-level positive airway pressure in congestive heart failure patients with cheyne-stokes respiration and central sleep apnea. Circ J. 2005;69(8):913–21. https://doi.org/10.1253/circj.69.913.

    Article  PubMed  Google Scholar 

  41. Dohi T, Kasai T, Narui K, Ishiwata S, Ohno M, Yamaguchi T, et al. Bi-level positive airway pressure ventilation for treating heart failure with central sleep apnea that is unresponsive to continuous positive airway pressure. Circ J. 2008;72(7):1100–5.

    Article  Google Scholar 

  42. Kohnlein T, Welte T, Tan LB, Elliott MW. Assisted ventilation for heart failure patients with Cheyne-Stokes respiration. Eur Respir J. 2002;20(4):934–41. https://doi.org/10.1183/09031936.00.02622001.

    Article  CAS  PubMed  Google Scholar 

  43. Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep. 2012;35(1):17–40. https://doi.org/10.5665/sleep.1580.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med. 2015;11(7):773–827. https://doi.org/10.5664/jcsm.4858.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clark GT, Blumenfeld I, Yoffe N, Peled E, Lavie P. A crossover study comparing the efficacy of continuous positive airway pressure with anterior mandibular positioning devices on patients with obstructive sleep apnea. Chest. 1996;109(6):1477–83. https://doi.org/10.1378/chest.109.6.1477.

    Article  CAS  PubMed  Google Scholar 

  46. Eskafi M. Sleep apnoea in patients with stable congestive heart failure an intervention study with a mandibular advancement device. Swed Dent J Suppl. 2004;168:1–56.

    Google Scholar 

  47. Eskafi M, Cline C, Israelsson B, Nilner M. A mandibular advancement device reduces sleep disordered breathing in patients with congestive heart failure. Swed Dent J. 2004;28(4):155–63.

    PubMed  Google Scholar 

  48. Cartwright RD. Effect of sleep position on sleep apnea severity. Sleep. 1984;7(2):110–4. https://doi.org/10.1093/sleep/7.2.110.

    Article  CAS  PubMed  Google Scholar 

  49. Permut I, Diaz-Abad M, Chatila W, Crocetti J, Gaughan JP, D'Alonzo GE, et al. Comparison of positional therapy to CPAP in patients with positional obstructive sleep apnea. J Clin Sleep Med. 2010;6(3):238–43.

    Article  Google Scholar 

  50. Szollosi I, Roebuck T, Thompson B, Naughton MT. Lateral sleeping position reduces severity of central sleep apnea/Cheyne-Stokes respiration. Sleep. 2006;29(8):1045–51. https://doi.org/10.1093/sleep/29.8.1045.

    Article  PubMed  Google Scholar 

  51. Pinna GD, Robbi E, La Rovere MT, Taurino AE, Bruschi C, Guazzotti G, et al. Differential impact of body position on the severity of disordered breathing in heart failure patients with obstructive vs. central sleep apnoea. Eur J Heart Fail. 2015;17(12):1302–9. https://doi.org/10.1002/ejhf.410.

    Article  CAS  PubMed  Google Scholar 

  52. Joho S, Oda Y, Hirai T, Inoue H. Impact of sleeping position on central sleep apnea/Cheyne-Stokes respiration in patients with heart failure. Sleep Med. 2010;11(2):143–8. https://doi.org/10.1016/j.sleep.2009.05.014.

    Article  PubMed  Google Scholar 

  53. Strollo PJ Jr, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370(2):139–49. https://doi.org/10.1056/NEJMoa1308659.

    Article  CAS  PubMed  Google Scholar 

  54. FDA. Inspire® Upper Airway Stimulation – P130008/S039. 2020.

  55. Yamauchi M, Satoh M, Kitahara T, Ota I, Strohl K. Nerve stimulation for the treatment of obstructive sleep apnea. Sleep Biol Rhythms. 2020;18(2):77–87. https://doi.org/10.1007/s41105-020-00252-2.

    Article  Google Scholar 

  56. Abraham WT, Jagielski D, Oldenburg O, Augostini R, Krueger S, Kolodziej A, et al. Phrenic nerve stimulation for the treatment of central sleep apnea. Jacc-Heart Fail. 2015;3(5):360–9. https://doi.org/10.1016/j.jchf.2014.12.013.

    Article  PubMed  Google Scholar 

  57. Jagielski D, Ponikowski P, Augostini R, Kolodziej A, Khayat R, Abraham WT. Transvenous stimulation of the phrenic nerve for the treatment of central sleep apnoea: 12 months' experience with the remede((R)) System. Eur J Heart Fail. 2016;18(11):1386–93. https://doi.org/10.1002/ejhf.593.

    Article  PubMed  Google Scholar 

  58. Fudim M, Spector AR, Costanzo MR, Pokorney SD, Mentz RJ, Jagielski D, et al. Phrenic nerve stimulation for the treatment of central sleep apnea: a pooled cohort analysis. J Clin Sleep Med. 2019;15(12):1747–55. https://doi.org/10.5664/jcsm.8076.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Barbieri F, Adukauskaite A, Heidbreder A, Brandauer E, Bergmann M, Stefani A, et al. Central sleep apnea and pacing-induced cardiomyopathy. Am J Cardiol. 2020. https://doi.org/10.1016/j.amjcard.2020.09.027. UPGRADE study demonstrates efficacy of CRT in those with CSA and pacing induced myopathy.

  60. Barbieri F, Adukauskaite A, Senoner T, Rubatscher A, Schgor W, Stuhlinger M, et al. Supplemental dataset on the influence of cardiac resynchronisation therapy in pacing-induced cardiomyopathy and concomitant central sleep Apnea. Data Brief. 2020;33:106461. https://doi.org/10.1016/j.dib.2020.106461.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sasayama S, Izumi T, Seino Y, Ueshima K, Asanoi H, C-HS G. Effects of nocturnal oxygen therapy on outcome measures in patients with chronic heart failure and Cheyne-Stokes respiration. Circ J. 2006;70(1):1–7. https://doi.org/10.1253/circj.70.1.

    Article  PubMed  Google Scholar 

  62. Shigemitsu M, Nishio K, Kusuyama T, Itoh S, Konno N, Katagiri T. Nocturnal oxygen therapy prevents progress of congestive heart failure with central sleep apnea. Int J Cardiol. 2007;115(3):354–60. https://doi.org/10.1016/j.ijcard.2006.03.018.

    Article  PubMed  Google Scholar 

  63. Toyama T, Seki R, Kasama S, Isobe N, Sakurai S, Adachi H, et al. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea. Circ J. 2009;73(2):299–304. https://doi.org/10.1253/circj.cj-07-0297.

    Article  PubMed  Google Scholar 

  64. Center NIoHC. The impact of low-flow oxygen therapy on hospital admissions and mortality in patients with heart filuare and central sleep apnea (LOFT-HF). 2019.

  65. Javaheri S. Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med. 2006;173(2):234–7. https://doi.org/10.1164/rccm.200507-1035OC.

    Article  CAS  PubMed  Google Scholar 

  66. • Schmickl CN, Landry SA, Orr JE, Chin K, Murase K, Verbraecken J, et al. Acetazolamide for OSA and central sleep apnea: a comprehensive systematic review and meta-analysis. Chest. 2020;158(6):2632–45. https://doi.org/10.1016/j.chest.2020.06.078. Systematic Review and Meta-Analysis of acetazolamide demonstrates benefit in CSA. This may be pivotal in increasing use of acetazolamide for CSA.

  67. Javaheri S, Parker TJ, Wexler L, Liming JD, Lindower P, Roselle GA. Effect of theophylline on sleep-disordered breathing in heart failure. N Engl J Med. 1996;335(8):562–7. https://doi.org/10.1056/NEJM199608223350805.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Holfinger.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part on the Topical Collection on Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holfinger, S., Chan, L. & Donald, R. All You Need Is Sleep: the Effects of Sleep Apnea and Treatment Benefits in the Heart Failure Patient. Curr Heart Fail Rep 18, 144–152 (2021). https://doi.org/10.1007/s11897-021-00506-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-021-00506-1

Keywords

Navigation