Skip to main content

Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope?

Abstract

Purpose of Review

Over the past decade, the gut microbiome has been shown to play an important role in the pathogenesis of heart failure (HF) and serves as a mediator that links host genomes and environmental exposure (especially dietary intake) to the development and progression of HF. Given that alterations in gut microbial composition and metabolism are commonly seen in patients with HF, the use of gut microbial metabolites as diagnostic and prognostic biomarkers, as well as novel therapeutic targets for HF, is promising.

Recent findings

Alterations in gut microbial composition and function have bidirectional relationships with HF. Gut microbial metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide (TMAO), and amino acid metabolites, have been shown to play a significant role in HF. For example, TMAO has been consistently demonstrated as an independent predictor of worse prognosis in patients with HF, and a potential therapeutic target for cardiac remodeling and HF. However, clinical studies on dietary interventions targeting gut microbial metabolites have demonstrated inconsistent findings, which could be from variations in the study population, gut microbial communities, and study designs.

Summary

Measurement of gut microbial metabolites can improve risk stratification and potentially identify HF patients who are more likely to respond to personalized pharmacologic or dietary interventions targeting specific pathways associated with the gut microbiome.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Google Scholar 

  2. 2.

    Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Sata Y, Marques FZ, Kaye DM. The emerging role of gut dysbiosis in cardio-metabolic risk factors for heart failure. Curr Hypertens Rep. 2020;22(5):38.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.•

    Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med. 2020;26(6):964–73 Compared to meal macronutrients, gut microbiome had a greater influence on postpandrial lipid profile.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Ni Y, Li J, Panagiotou G. A Molecular-level landscape of diet-gut microbiome interactions: toward dietary interventions targeting bacterial genes. mBio. 2015;6(6):e01263–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front Microbiol. 2017;8:1829.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Krack A, Sharma R, Figulla HR, Anker SD. The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J. 2005;26(22):2368–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Krack A, Richartz BM, Gastmann A, Greim K, Lotze U, Anker SD, et al. Studies on intragastric PCO2 at rest and during exercise as a marker of intestinal perfusion in patients with chronic heart failure. Eur J Heart Fail. 2004;6(4):403–7.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17(5):269–85.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Murphy SP, Kakkar R, McCarthy CP, Januzzi JL. Inflammation in heart failure. J Am Coll Cardiol. 2020;75(11):1324–40.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Al-Sadi RM, Ma TY. IL-1β causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178(7):4641–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hietbrink F, Besselink MG, Renooij W, de Smet MB, Draisma A, et al. Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock (Augusta, Ga). 2009;32(4):374–8.

    CAS  Article  Google Scholar 

  15. 15.

    Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLOS ONE. 2014;9(3):e85345.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2005;288(3):G422–G30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Polsinelli VB, Sinha A, Shah SJ. Visceral congestion in heart failure: right ventricular dysfunction, splanchnic hemodynamics, and the intestinal microenvironment. Current Heart Failure Reports. 2017;14(6):519–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility. Antioxid Redox Signal. 2011;15(7):1895–909.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Tavener SA, Long EM, Robbins SM, McRae KM, Remmen HV, Kubes P. Immune Cell Toll-Like Receptor 4 Is Required for Cardiac Myocyte Impairment During Endotoxemia. Circ Res. 2004;95(7):700–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Fallach R, Shainberg A, Avlas O, Fainblut M, Chepurko Y, Porat E, et al. Cardiomyocyte toll-like receptor 4 is involved in heart dysfunction following septic shock or myocardial ischemia. J Mol Cell Cardiol. 2010;48(6):1236–44.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet (London, England). 1999;353(9167):1838–42.

    CAS  Article  Google Scholar 

  22. 22.

    Conraads VM, Jorens PG, De Clerck LS, Van Saene HK, Ieven MM, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail. 2004;6(4):483–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Yuzefpolskaya M, Bohn B, Nasiri M, Zuver AM, Onat DD, Royzman EA, et al. Gut microbiota, endotoxemia, inflammation, and oxidative stress in patients with heart failure, left ventricular assist device, and transplant. J Heart Lung Transplant. 2020;39(9):880–90.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Jennings DL, Bohn B, Zuver A, Onat D, Gaine M, Royzman E, et al. Gut microbial diversity, inflammation, and oxidative stress are associated with tacrolimus dosing requirements early after heart transplantation. PLOS ONE. 2020;15(5):e0233646.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Mamic P, Heidenreich PA, Hedlin H, Tennakoon L, Staudenmayer KL. Hospitalized Patients with Heart Failure and Common Bacterial Infections: A Nationwide Analysis of Concomitant Clostridium Difficile Infection Rates and In-Hospital Mortality. J Card Fail. 2016;22(11):891–900.

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Luedde M, Winkler T, Heinsen F-A, Rühlemann MC, Spehlmann ME, Bajrovic A, et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Failure. 2017;4(3):282–90.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, Storm-Larsen C, et al. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol. 2018;71(10):1184–6.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.••

    Mayerhofer CCK, Kummen M, Holm K, Broch K, Awoyemi A, et al. Low fibre intake is associated with gut microbiota alterations in chronic heart failure. ESC Heart Failure. 2020;7(2):456–66 Low fiber diet was associated with decreased gut microbial richness and Firmicutes phylum, as well as increased mortality and heart transplant.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, et al. Pathogenic gut flora in patients with chronic heart failure. JACC: Heart Failure. 2016;4(3):220–7.

    PubMed  PubMed Central  Google Scholar 

  30. 30.•

    Cui X, Ye L, Li J, Jin L, Wang W, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Scientific Reports. 2018;8(1):635 Patients with HF had significantly different gut microbial profile, and decreased butyrate but increased TMAO production.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, et al. Structural variation in the gut microbiome associates with host health. Nature. 2019;568(7750):43–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease. Hypertension. 2020;76(5):1555–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Mistry P, Reitz CJ, Khatua TN, Rasouli M, Oliphant K, Young ME, et al. Circadian influence on the microbiome improves heart failure outcomes. J Mol Cell Cardiol. 2020;149:54–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Morgan XC, Huttenhower C. Meta’omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014;146(6):1437-48.e1.

    Article  CAS  Google Scholar 

  36. 36.

    Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089–105.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Tonucci LB. Olbrich dos Santos KM, Licursi de Oliveira L, Rocha Ribeiro SM, Duarte Martino HS. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin Nutr. 2017;36(1):85–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Ouwehand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. Br J Nutr. 2009;101(3):367–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Klein A, Friedrich U, Vogelsang H, Jahreis G. Lactobacillus acidophilus 74-2 and Bifidobacterium animalis subsp lactis DGCC 420 modulate unspecific cellular immune response in healthy adults. Eur J Clin Nutr. 2008;62(5):584–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Ferrario C, Taverniti V, Milani C, Fiore W, Laureati M, de Noni I, et al. Modulation of fecal Clostridiales bacteria and butyrate by probiotic intervention with Lactobacillus paracasei DG varies among healthy adults. J Nutr. 2014;144(11):1787–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Lee Y, Ba Z, Roberts RF, Rogers CJ, Fleming JA, et al. Effects of Bifidobacterium animalis subsp. lactis BB-12(®) on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: a randomized controlled trial. Nutr J. 2017;16(1):39.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Culpepper T, Rowe CC, Rusch CT, Burns AM, Federico AP, Girard SA, et al. Three probiotic strains exert different effects on plasma bile acid profiles in healthy obese adults: randomised, double-blind placebo-controlled crossover study. Benefic Microbes. 2019;10(5):497–509.

    CAS  Article  Google Scholar 

  43. 43.

    Hibberd AA, Yde CC, Ziegler ML, Honoré AH, Saarinen MT, Lahtinen S, et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benefic Microbes. 2019;10(2):121–35.

    CAS  Article  Google Scholar 

  44. 44.

    Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, et al. Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2017;19(4):579–89.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Stadlbauer V, Leber B, Lemesch S, Trajanoski S, Bashir M, Horvath A, et al. Lactobacillus casei Shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: a randomized pilot study. PLoS One. 2015;10(10):e0141399.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Boutagy NE, Neilson AP, Osterberg KL, Smithson AT, Englund TR, Davy BM, et al. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet. Obesity. 2015;23(12):2357–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Borges NA, Stenvinkel P, Bergman P, Qureshi AR, Lindholm B, Moraes C, et al. Effects of Probiotic Supplementation on Trimethylamine-N-Oxide Plasma Levels in Hemodialysis Patients: a Pilot Study. Probiotics and Antimicrobial Proteins. 2019;11(2):648–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Chen S, Jiang P-P, Yu D, Liao G-C, Wu S-L, et al. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Eur J Nutr. 2020.

  49. 49.

    Lopes R, Theodoro JMV, da Silva BP, Queiroz VAV, de Castro Moreira ME, et al. Synbiotic meal decreases uremic toxins in hemodialysis individuals: a placebo-controlled trial. Food Res Int. 2019;116:241–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Guida B, Germanò R, Trio R, Russo D, Memoli B, Grumetto L, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2014;24(9):1043–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Borges NA, Carmo FL, Stockler-Pinto MB, de Brito JS, Dolenga CJ, Ferreira DC, et al. Probiotic supplementation in chronic kidney disease: a double-blind, randomized, placebo-controlled trial. J Ren Nutr. 2018;28(1):28–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11(2):223–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Pimentel G, Burton KJ, von Ah U, Bütikofer U, Pralong FP, Vionnet N, et al. Metabolic footprinting of fermented milk consumption in serum of healthy men. J Nutr. 2018;148(6):851–60.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Jones ML, Martoni CJ, Tamber S, Parent M, Prakash S. Evaluation of safety and tolerance of microencapsulated Lactobacillus reuteri NCIMB 30242 in a yogurt formulation: a randomized, placebo-controlled, double-blind study. Food Chem Toxicol. 2012;50(6):2216–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Burton KJ, Krüger R, Scherz V, Münger LH, Picone G, et al. Trimethylamine-N-oxide postprandial response in plasma and urine is lower after fermented compared to non-fermented dairy consumption in healthy adults. Nutrients. 2020;12(1).

  56. 56.

    Quercia S, Turroni S, Fiori J, Soverini M, Rampelli S, et al. Gut microbiome response to short-term dietary interventions in reactive hypoglycemia subjects. Diabetes Metab Res Rev. 2017;33(8).

  57. 57.

    Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–21.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  59. 59.

    Pagliai G, Russo E, Niccolai E, Dinu M, Di Pilato V, et al. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. Eur J Nutr. 2020;59(5):2011–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Pignanelli M, Just C, Bogiatzi C, Dinculescu V, Gloor GB, et al. Mediterranean diet score: associations with metabolic products of the intestinal microbiome, carotid plaque burden, and renal function. Nutrients. 2018;10(6).

  61. 61.

    Guasch-Ferré M, Hu FB, Ruiz-Canela M, Bulló M, Toledo E, et al. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (Prevention With Mediterranean Diet) study. J Am Heart Assoc. 2017;6(11).

  62. 62.

    Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME, Davy KP, et al. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019;10(4):2138–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Trefflich I, Marschall HU, Giuseppe RD, Ståhlman M, Michalsen A, et al. Associations between dietary patterns and bile acids-results from a cross-sectional study in Vegans and Omnivores. Nutrients. 2019;12(1).

  64. 64.

    van Faassen A, Hazen MJ, van den Brandt PA, van den Bogaard AE, Hermus RJ, Janknegt RA. Bile acids and pH values in total feces and in fecal water from habitually omnivorous and vegetarian subjects. Am J Clin Nutr. 1993;58(6):917–22.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2018;40(7):583–94.

    PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Kandouz S, Mohamed AS, Zheng Y, Sandeman S, Davenport A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodial Int. 2016;20(4):610–7.

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Patel KP, Luo FJ, Plummer NS, Hostetter TH, Meyer TW. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol. 2012;7(6):982–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    González Hernández MA, Canfora EE, Pasmans K, Astrup A, Saris WHM, Blaak EE. The relationship between circulating acetate and human insulin resistance before and after weight loss in the DiOGenes study. Nutrients. 2020;12(2).

  70. 70.

    Alemán JO, Bokulich NA, Swann JR, Walker JM, De Rosa JC, et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J Transl Med. 2018;16(1):244.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, et al. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity. J Intern Med. 2017;281(5):507–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    van Nierop FS, Kulik W, Endert E, Schaap FG, Olde Damink SW, Romijn JA, et al. Effects of acute dietary weight loss on postprandial plasma bile acid responses in obese insulin resistant subjects. Clin Nutr. 2017;36(6):1615–20.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  73. 73.

    Erickson ML, Malin SK, Wang Z, Brown JM, Hazen SL, Kirwan JP. Effects of lifestyle intervention on plasma trimethylamine N-oxide in obese adults. Nutrients. 2019;11(1).

  74. 74.

    Washburn RL, Cox JE, Muhlestein JB, May HT, Carlquist JF, et al. Pilot study of novel intermittent fasting effects on metabolomic and trimethylamine N-oxide changes during 24-hour water-only fasting in the FEELGOOD trial. Nutrients. 2019;11(2).

  75. 75.

    Topping DL, Clifton PM. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol Rev. 2001;81(3):1031–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Peng L, Li Z-R, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    de la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, Velásquez-Mejía EP, Sierra JA, Corrales-Agudelo V, et al. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2018;11(1):51.

    PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.••

    Marques FZ, Nelson E, Chu P-Y, Horlock D, Fiedler A, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77 High fiber intake and acetate supplementation reduced cardiac hypertrophy and fibrosis.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PloS one. 2017;12(3):e0174099-e.

    Article  CAS  Google Scholar 

  81. 81.•

    Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, et al. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. Journal of the American College of Cardiology. 2018;71(10):1184–6 HF patients had significantly decreased microbial richness and relative abundance of SCFA-producing gut microbes.

    PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Sarah K, Nicolaas D, John T, Gabriella TH, Engelen M. Reduced short-chain fatty acid (SCFA) plasma concentrations are associated with decreased psychological well-being in clinically stable congestive heart failure patients. Current Developments in Nutrition. 2020;4(Supplement_2):42.

    PubMed Central  Article  Google Scholar 

  83. 83.

    Jama HA, Fiedler A, Tsyganov K, Nelson E, Horlock D, Nakai ME, et al. Manipulation of the gut microbiota by the use of prebiotic fibre does not override a genetic predisposition to heart failure. Sci Rep. 2020;10(1):17919.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Foley MH, O’Flaherty S, Barrangou R, Theriot CM. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019;15(3):e1007581-e.

    Article  CAS  Google Scholar 

  85. 85.

    Binah O, Rubinstein I, Bomzon A, Better OS. Effects of bile acids on ventricular muscle contraction and electrophysiological properties: studies in rat papillary muscle and isolated ventricular myocytes. Naunyn Schmiedeberg's Arch Pharmacol. 1987;335(2):160–5.

    CAS  Article  Google Scholar 

  86. 86.

    Joubert P. An in vivo investigation of the negative chronotropic effect of cholic acid in the rat. Clin Exp Pharmacol Physiol. 1978;5(1):1–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Pu J, Yuan A, Shan P, Gao E, Wang X, Wang Y, et al. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury. Eur Heart J. 2013;34(24):1834–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Gao J, Liu X, Wang B, Xu H, Xia Q, Lu T, et al. Farnesoid X receptor deletion improves cardiac function, structure and remodeling following myocardial infarction in mice. Mol Med Rep. 2017;16(1):673–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Li YTY, Swales KE, Thomas GJ, Warner TD, Bishop-Bailey D. Farnesoid X receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler Thromb Vasc Biol. 2007;27(12):2606–11.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  90. 90.

    Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart. Circ Res. 2011;108(9):1122–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462-e.

    Article  CAS  Google Scholar 

  92. 92.

    Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure. J Card Fail. 2017;23(9):666–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    von Haehling S, Schefold JC, Jankowska EA, Springer J, Vazir A, Kalra PR, et al. Ursodeoxycholic acid in patients with chronic heart failure: a double-blind, randomized, placebo-controlled, crossover trial. J Am Coll Cardiol. 2012;59(6):585–92.

    Article  CAS  Google Scholar 

  94. 94.

    Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61(1):1600324.

    Article  CAS  Google Scholar 

  95. 95.

    Papandreou C, Moré M, Bellamine A. Trimethylamine N-oxide in relation to cardiometabolic health-cause or effect? Nutrients. 2020;12(5).

  96. 96.

    Koeth Robert A, Levison Bruce S, Culley Miranda K, Buffa Jennifer A, Wang Z, et al. γ-Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L -Carnitine to TMAO. Cell Metab. 2014;20(5):799–812.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314-e.

    Article  CAS  Google Scholar 

  100. 100.

    Makrecka-Kuka M, Volska K, Antone U, Vilskersts R, Grinberga S, Bandere D, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett. 2017;267:32–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Savi M, Bocchi L, Bresciani L, Falco A, Quaini F, Mena P, et al. Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide. Molecules. 2018;23(3):549.

    PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Li Z, Wu Z, Yan J, Liu H, Liu Q, Deng Y, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Investig. 2019;99(3):346–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, et al. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol. 2020;40(5):1239–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Tang WHW, Wang Z, Shrestha K, Borowski AG, Wu Y, Troughton RW, et al. Intestinal Microbiota-Dependent Phosphatidylcholine Metabolites, Diastolic Dysfunction, and Adverse Clinical Outcomes in Chronic Systolic Heart Failure. J Card Fail. 2015;21(2):91–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717–26.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  106. 106.

    Tang WHW, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Huang Y, Zheng S, Zhu H, Lu J, Li W, Hu Y. Gut microbe-generated metabolite trimethylamine-N-oxide and risk of major adverse cardiovascular events in patients with heart failure. Journal of the American College of Cardiology. 2020;75(11 Supplement 1):834.

    Article  Google Scholar 

  108. 108.

    Li W, Huang A, Zhu H, Liu X, Huang X, Huang Y, et al. Gut microbiota-derived trimethylamine N-oxide is associated with poor prognosis in patients with heart failure. Med J Aust. 2020;213(8):374–9.

    PubMed  Article  PubMed Central  Google Scholar 

  109. 109.••

    Suzuki T, Yazaki Y, Voors AA, Jones DJL, Chan DCS, et al. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. European Journal of Heart Failure. 2019;21(7):877–86 Elevated TMAO was associated with motality and/or hospitalization regardless of guideline-directed medical therapy in chronic HF patients.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Trøseid M, Mayerhofer CCK, Broch K, Arora S, Svardal A, Hov JR, et al. The carnitine-butyrobetaine-TMAO pathway after cardiac transplant: Impact on cardiac allograft vasculopathy and acute rejection. J Heart Lung Transplant. 2019;38(10):1097–103.

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Suzuki T, Heaney LM, Bhandari SS, Jones DJL, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart. 2016;102(11):841–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Yazaki Y, Aizawa K, Israr MZ, Negishi K, Salzano A, Saitoh Y, et al. Ethnic differences in association of outcomes with trimethylamine N-oxide in acute heart failure patients. ESC Heart Failure. 2020;7(5):2373–8.

    PubMed  PubMed Central  Article  Google Scholar 

  113. 113.•

    Schuett K, Kleber ME, Scharnagl H, Lorkowski S, März W, et al. Trimethylamine-N-oxide and heart failure with reduced versus preserved ejection fraction. Journal of the American College of Cardiology. 2017;70(25):3202–4 Prognostic utility of TMAO was greater in HFrEF compared to HFpEF.

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Salzano A, Israr MZ, Yazaki Y, Heaney LM, Kanagala P, et al. Combined use of trimethylamine N-oxide with BNP for risk stratification in heart failure with preserved ejection fraction: findings from the DIAMONDHFpEF study. European Journal of Preventive Cardiology. 0(0):2047487319870355.

  115. 115.••

    Organ CL, Li Z, Sharp TE, Polhemus DJ, Gupta N, et al. Nonlethal Inhibition of gut microbial trimethylamine N-oxide production improves cardiac function and remodeling in a murine model of heart failure. Journal of the American Heart Association. 2020;9(10):e016223 Withdrawal of TMAO from the diet and a TMA lyase inhibitor, iodomethylcholine, improved cardiac function and remodeling.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.••

    Wang G, Kong B, Shuai W, Fu H, Jiang X, Huang H. 3,3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice. The Journal of Nutritional Biochemistry. 2020;78:108341. Inhibition of TMAO production by DMB was associated with improved pressure-induced cardiac remodeling

  117. 117.

    Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: a population-based cohort study. Atherosclerosis. 2015;243(1):93–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Tektonidis TG, Åkesson A, Gigante B, Wolk A, Larsson SC. Adherence to a Mediterranean diet is associated with reduced risk of heart failure in men. Eur J Heart Fail. 2016;18(3):253–9.

    PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Chrysohoou C, Panagiotakos DB, Aggelopoulos P, Kastorini C-M, Kehagia I, Pitsavos C, et al. The Mediterranean diet contributes to the preservation of left ventricular systolic function and to the long-term favorable prognosis of patients who have had an acute coronary event. Am J Clin Nutr. 2010;92(1):47–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Papadaki A, Martínez-González MÁ, Alonso-Gómez A, Rekondo J, Salas-Salvadó J, Corella D, et al. Mediterranean diet and risk of heart failure: results from the PREDIMED randomized controlled trial. Eur J Heart Fail. 2017;19(9):1179–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Wirth J, di Giuseppe R, Boeing H, Weikert C. A Mediterranean-style diet, its components and the risk of heart failure: a prospective population-based study in a non-Mediterranean country. Eur J Clin Nutr. 2016;70(9):1015–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Matsumoto M, Kitada Y, Shimomura Y, Naito Y. Bifidobacterium animalis subsp. lactis LKM512 reduces levels of intestinal trimethylamine produced by intestinal microbiota in healthy volunteers: a double-blind, placebo-controlled study. Journal of Functional Foods. 2017;36:94–101.

    CAS  Article  Google Scholar 

  124. 124.

    Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity. 2014;41(2):296–310.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Zhao Z-H, Xin F-Z, Xue Y, Hu Z, Han Y, Ma F, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med. 2019;51(9):1–14.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Alexander D, Lombardi R, Rodriguez G, Mitchell MM, Marian AJ. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur J Clin Investig. 2011;41(5):527–38.

    Article  Google Scholar 

  128. 128.

    Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J. 2010;31(14):1771–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Hung S-C, Kuo K-L, Wu C-C, Tarng D-C. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017;6(2):e005022.

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Yisireyili M, Saito S, Abudureyimu S, Adelibieke Y, Ng H-Y, Nishijima F, et al. Indoxyl Sulfate-Induced Activation of (Pro)renin Receptor Promotes Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells. PLOS ONE. 2014;9(10):e109268.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131.

    Sun C-Y, Chang S-C, Wu M-S. Uremic Toxins Induce Kidney Fibrosis by Activating Intrarenal Renin–Angiotensin–Aldosterone System Associated Epithelial-to-Mesenchymal Transition. PLOS ONE. 2012;7(3):e34026.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Shimazu S, Hirashiki A, Okumura T, Yamada T, Okamoto R, Shinoda N, et al. Association between indoxyl sulfate and cardiac dysfunction and prognosis in patients with dilated cardiomyopathy. Circ J. 2013;77(2):390–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Han H, Zhu J, Zhu Z, Ni J, Du R, et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. Journal of the American Heart Association. 2015;4(6):e001852-e.

    Article  CAS  Google Scholar 

  134. 134.

    Peng Y-S, Ding H-C, Lin Y-T, Syu J-P, Chen Y, Wang S-M. Uremic toxin p-cresol induces disassembly of gap junctions of cardiomyocytes. Toxicology. 2012;302(1):11–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135.

    Wang C-H, Cheng M-L, Liu M-H, Shiao M-S, Hsu K-H, Huang YY, et al. Increased p-cresyl sulfate level is independently associated with poor outcomes in patients with heart failure. Heart Vessel. 2016;31(7):1100–8.

    CAS  Article  Google Scholar 

  136. 136.

    Asanuma H, Chung H, Ito S, Min K-D, Ihara M, Takahama H, et al. AST-120, an adsorbent of uremic toxins, improves the pathophysiology of heart failure in conscious dogs. Cardiovasc Drugs Ther. 2019;33(3):277–86.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

Dr. Tang is supported by grants from the National Institutes of Health (R01HL126827).

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Dr. Chaikijurajai has no relationships to disclose. Dr. Tang is a consultant for Sequana Medical A.G., Owkin Inc, and Relypsa Inc, and has received an honorarium from Springer Nature for authorship/editorship and American Board of Internal Medicine for exam writing committee participation, all unrelated to the contents of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaikijurajai, T., Tang, W.H.W. Gut Microbiome and Precision Nutrition in Heart Failure: Hype or Hope?. Curr Heart Fail Rep 18, 23–32 (2021). https://doi.org/10.1007/s11897-021-00503-4

Download citation

Keywords

  • Gut microbiome
  • Heart failure
  • Short-chain fatty acid
  • Bile acids
  • TMAO