Skip to main content
  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (A Hasan, Section Editor)
  • Published:

Stem Cell Therapy for Chronic and Advanced Heart Failure

Abstract

Purpose of Review

The purpose of this review is to discuss recent advances in the field of cell therapy in patients with heart failure with reduced ejection fraction (HFrEF) of ischemic (iCMP) and nonischemic (dCMP) etiology, heart failure with preserved ejection fraction (HFpEF), and in advanced heart failure patients undergoing mechanical circulatory support (LVAD).

Recent Findings

In HFrEF patients (iCMP and dCMP cohorts), autologous and/or allogeneic cell therapy was shown to improve myocardial performance, patients’ functional capacity, and neurohumoral activation. In HFpEF patient population, the concept of cell therapy in novel and remains largely unexplored. However, initial data are very encouraging and suggest at least a similar benefit in improvements of myocardial performance (also diastolic function of the left ventricle), exercise capacity, and neurohumoral activation. Recently, cell therapy was explored in the sickest population of advanced heart failure patients undergoing LVAD support also showing a potential benefit in promoting myocardial reverse remodeling and recovery.

Summary

In the past decade, several cell therapy-based clinical trials showed promising results in various chronic and advanced heart failure patient cohorts. Future cell treatment strategies should aim for more personalized therapeutic approaches by defining optimal stem cell type or their combination, dose, and delivery method for an individual patient adjusted for patient’s age and stage/duration of heart failure.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. https://doi.org/10.1002/ejhf.592.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    •• Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5. https://doi.org/10.1038/35070587First data to suggest myocardial regeneration after injury is possible.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lund LH, Edwards LB, Dipchand AI, Goldfarb S, Kucheryavaya AY, Levvey BJ, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-third adult heart transplantation Report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35(10):1158–69. https://doi.org/10.1016/j.healun.2016.08.017.

    Article  Google Scholar 

  5. 5.

    St John Sutton MG, Sharpe N. Left ventricular remodelling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–8. https://doi.org/10.1161/01.cir.101.25.2981.

    Article  Google Scholar 

  6. 6.

    Jugdutt BI. Ventricular remodelling after infarction and the extracellular collagen matrix. Circulation. 2003;108:1395–403. https://doi.org/10.1161/01.CIR.0000085658.98621.49.

    Article  PubMed  Google Scholar 

  7. 7.

    Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci. 2001;938:221–30. https://doi.org/10.1111/j.1749-6632.2001.tb03592.x.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Orlic D. Adult bone marrow stem cells regenerate myocardium in ischemic heart disease. Ann N Y Acad Sci. 2003;996:152–7. https://doi.org/10.1111/j.1749-6632.2003.tb03243.x.

    Article  PubMed  Google Scholar 

  9. 9.

    Kinnaird T, Stabile E, Burnett SM, Shou M, Lee CW, Barr S, et al. Local delivery ofmarrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004;109(12):1543–9. https://doi.org/10.1161/01.CIR.0000124062.31102.57.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Du YY, Zhou SH, Zhou T, Su H, Pan HW, Du WH, et al. Immuno-inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model ofmyocardial infarction. Cytotherapy. 2008;10(5):469–78. https://doi.org/10.1080/14653240802129893.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Stumpf C, Seybold K, Petzi S, Wasmeier G, Raaz D, Yilmaz A, et al. Interleukin-10 improves left ventricular function in rats with heart failure subsequent to myocardial infarction. Eur J Heart Fail. 2008;10(8):733–9. https://doi.org/10.1016/j.ejheart.2008.06.007.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Onai Y, Suzuki JI, Maejima Y, Haraguchi G, Muto S, Itai M, et al. Inhibition of NF-κB improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Phys. 2007;292(1):H530–8. https://doi.org/10.1152/ajpheart.00549.2006.

    CAS  Article  Google Scholar 

  13. 13.

    •• Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107(18):2294–302. https://doi.org/10.1161/01.CIR.0000070596.30552.8BThis was the first study to explore effects of cell therapy in clinical settings.

    Article  PubMed  Google Scholar 

  14. 14.

    Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Hölschermann, et al. Improved clinical outcome after intracoronary administration of bone-marrowderived progenitor cells in acutemyocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27(23):2775–83. https://doi.org/10.1093/eurheartj/ehl388.

    Article  PubMed  Google Scholar 

  15. 15.

    Lunde K, Solheim S, Aakhus S, Arnsen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New Eng J Med. 2006;355(12):1199–209. https://doi.org/10.1056/NEJMoa055706.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T, et al. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD registry. Circ Res. 2007;100(8):1234–41. https://doi.org/10.1161/01.RES.0000264508.47717.6b.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J. 2009;30(24):2978–84. https://doi.org/10.1093/eurheartj/ehp374.

    Article  PubMed  Google Scholar 

  18. 18.

    Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, et al. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J. 2011;161(6):1078–87. https://doi.org/10.1016/j.ahj.2011.01.028.

    Article  PubMed  Google Scholar 

  19. 19.

    Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DXM, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307(16):1717–26. https://doi.org/10.1001/jama.2012.418.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. https://doi.org/10.1016/S0140-6736(12)60195-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Paitazoglou C, Bergmann MW, Vrtovec B, Chamuleau SAJ, van Klarenbosch B, Wojakowski W, et al. Rationale and design of the European multicentre study on stem cell therapy in IschEmic non-treatable cardiac diseasE (SCIENCE). Eur J Heart Fail. 2019;21(8):1032–41. https://doi.org/10.1002/ejhf.1412.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Borow KM, Yaroshinsky A, Greenberg B, Perin EC. Phase 3 DREAM-HF trial of mesenchymal precursor cells in chronic heart failure. Circ Res. 2019;125(3):265–81. https://doi.org/10.1161/CIRCRESAHA.119.314951.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, et al. Intracoronary infusion of bone marrow-derived selected CD34(+)CXCR4(+) cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. Eur Heart J. 2009;30(11):1313–21. https://doi.org/10.1093/eurheartj/ehp073.

    Article  PubMed  Google Scholar 

  24. 24.

    Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109(4):428–36. https://doi.org/10.1161/CIRCRESAHA.111.245993.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93(5):841–2. https://doi.org/10.1161/01.cir.93.5.841.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Nakahara S, Tung R, Ramirez RJ, Michowitz Y, Vaseghi M, Buch E, et al. Characterization of the arrhythmogenic substrate in ischemic and nonischemic cardiomyopathy implications for catheter ablation of hemodynamically unstable ventricular tachycardia. J Am Coll Cardiol. 2010;55(21):2355–65. https://doi.org/10.1016/j.jacc.2010.01.041.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Roura S, Bayes-Genis A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol. 2009;6(9):590–8. https://doi.org/10.1038/nrcardio.2009.130.

    Article  PubMed  Google Scholar 

  28. 28.

    Schäfer R, Abraham D, Paulus P, Blumer R, Grimm M, Wojta J, et al. Impaired VE-cadherin/beta-catenin expression mediates endothelial cell degeneration in dilated cardiomyopathy. Circulation. 2003;108(13):1585–91. https://doi.org/10.1161/01.CIR.0000091085.12422.19.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    • Theiss HD, David R, Engelmann MG, Barth A, Schotten K, Naebauer M, et al. Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). European Heart Journal. 2007;28:1258–64. https://doi.org/10.1093/eurheartj/ehm011This study outline the correlation with stem cell reserve and heart failure type and stage.

    Article  PubMed  Google Scholar 

  30. 30.

    Valgimigli M, Rigolin GM, Fucili A, Della Porta M, Soukhomovskaia O, Malagutti P, et al. CD34+ and ePCs in patients with various degrees of congestive heart failure. Circulation. 2004;110:1209–12. https://doi.org/10.1161/01.CIR.0000136813.89036.21.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, et al. Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol. 2007;49(24):2341–9. https://doi.org/10.1016/j.jacc.2007.01.095.

    Article  PubMed  Google Scholar 

  32. 32.

    Fischer-Rasokat U, Assmus B, Seeger FH, Honold J, Leistner D, Fichtlscherer S, et al. A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail. 2009;2:417–23. https://doi.org/10.1161/CIRCHEARTFAILURE.109.855023.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Seth S, Narang R, Bhargava B, Ray R, Mohanty S, Gulati G, et al. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (autologous bone marrow cells in dilated cardiomyopathy) trial. J Am Coll Cardiol. 2006;48:2350–1. https://doi.org/10.1016/j.jacc.2006.07.057.

    Article  PubMed  Google Scholar 

  34. 34.

    Bocchi EA, Bacal F, Guimarães G, Mendroni A, Mocelin A, Esteves Filho A, et al. Granulocyte-colony stimulating factor or granulocyte-colony stimulating factor associated to stem cell intracoronary infusion effects in non ischemic refractory heart failure. Int J Cardiol. 2010;138(1):94–7. https://doi.org/10.1016/j.ijcard.2008.06.002.

    Article  PubMed  Google Scholar 

  35. 35.

    Hamshere S, Arnous S, Choudhury T, Choudry F, Mozid A, Yeo C, et al. Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non-ischaemic dilated cardiomyopathy: the REGENERATE-DCM clinical trial. Eur Heart J. 2015;36(44):3061–9. https://doi.org/10.1093/eurheartj/ehv390.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    •• Vrtovec B, Poglajen G, Sever M, Lezaic L, Domanovic D, Cernelc P, et al. Effects of intracoronary stem cell transplantation in patients with dilated cardiomyopathy. J Card Fail. 2011;17:272–81. https://doi.org/10.1016/j.cardfail.2010.11.007First randomized prospective study to evaluate cell therapy in non-ishcemic cardiomyopathy.

    Article  PubMed  Google Scholar 

  37. 37.

    • Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res. 2013;112(1):165–73. https://doi.org/10.1161/CIRCRESAHA.112.276519Study to present the longest follow-up data of cell therapy in non-ischemic cardiomyopathy and suggests potential survival benefit of cell therapy in this patient cohort.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    • Vrtovec B, Poglajen G, Lezaic L, Sever M, Socan A, Domanovic D, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation. 2013;128(11 Suppl 1):S42–9. https://doi.org/10.1161/CIRCULATIONAHA.112.000230This study presents one of the strongest clinical data to support transendocardial cell delivery over intracoronary cell injections.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ, et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II-A randomized trial. Circ Res. 2017;120(2):332–40. https://doi.org/10.1161/CIRCRESAHA.116.309717.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    • Hare JM, DL DF, Rieger AC, Florea V, Landin AM, El-Khorazaty J, et al. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol. 2017;69(5):526–37. https://doi.org/10.1016/j.jacc.2016.11.009First study to compare autologous to allogeneic cell therapy in non-ischemic cardiomyopathy patients.

    Article  PubMed  Google Scholar 

  41. 41.

    • Vrtovec B, Poglajen G, Sever M, Zemljic G, Frljak S, Cerar A, et al. Effects of repetitive Transendocardial CD34 + cell transplantation in patients with nonischemic dilated cardiomyopathy. Circ Res. 2018;123(3):389–96. https://doi.org/10.1161/CIRCRESAHA.117.312170First study to compare repetetive cell therapy to single cell therapy approach.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Owan TE, Hodge DO, Herges RM, Jacobsen JS, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9. https://doi.org/10.1056/NEJMoa052256.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131:550–9.

    Article  Google Scholar 

  44. 44.

    Goligorsky MS. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis. 2010;6:1–10. https://doi.org/10.4161/org.6.1.10427.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading onmicrovasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56:382–91. https://doi.org/10.1016/j.jacc.2010.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Gallet R, de Couto G, Simsolo E, Valle J, Sun B, Liu W, et al. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci. 2016;1(1–2):14–28. https://doi.org/10.1016/j.jacbts.2016.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Poglajen G, Gregoric ID, Radovancevic R, Vrtovec B. Stem cell and left ventricular assist device combination therapy. Circ Heart Fail. 2019;12(2):e005454. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005454.

    Article  PubMed  Google Scholar 

  48. 48.

    Topkara VK, Garan AR, Fine B, Godier-Furnemont AF, Breskin A, Cagliostro B, et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the interagency registry for mechanically assisted circulatory support (INTERMACS). Circ Heart Fail. 2016;9. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003157.

  49. 49.

    Drakos SG, Wever-Pinzon O, Selzman CH, Gilbert EM, Alharethi R, Reid BB, et al. Magnitude and time course of changes induced by continuous-flow left ventricular assist device unloading in chronic heart failure: insights into cardiac recovery. J Am Coll Cardiol. 2013;61:1985–94. https://doi.org/10.1016/j.jacc.2013.01.072.

    Article  PubMed  Google Scholar 

  50. 50.

    Ascheim DD, Gelijns AC, Goldstein D, Moye LA, Smedira N, Lee S, et al. Mesenchymal precursor cells as adjunctive therapy in recipients of contemporary left ventricular assist devices. Circulation. 2014;129:2287–96. https://doi.org/10.1161/CIRCULATIONAHA.113.007412.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Stempien-Otero A, Helterline D, Plummer T, Farris S, Prouse A, Polissar N, et al. Mechanisms of bone marrow-derived cell therapy in ischemic cardiomyopathy with left ventricular assist device bridge to transplant. J Am Coll Cardiol. 2015;65:1424–34. https://doi.org/10.1016/j.jacc.2015.01.042.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    •• Yau TM, Pagani FD, Mancini DM, Chang HL, Lala A, Woo YJ, et al. Intramyocardial injection of mesenchymal precursor cells and successful temporary weaning from left ventricular assist device support in patients with advanced heart failure: a randomized clinical trial. JAMA. 2019;321(12):1176–86. https://doi.org/10.1001/jama.2019.2341The largest clinical trial of cell therapy in LVAD-supported patients.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zheng Y, Sampaio LC, Li K, Silva GV, Cabreira-Hansen M, Vela D, et al. Safety and feasibility of mapping and stem cell delivery in the presence of an implanted left ventricular assist device: a preclinical investigation in sheep. Tex Heart Inst J. 2013;40:229–34.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregor Poglajen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poglajen, G., Frljak, S., Zemljič, G. et al. Stem Cell Therapy for Chronic and Advanced Heart Failure. Curr Heart Fail Rep 17, 261–270 (2020). https://doi.org/10.1007/s11897-020-00477-9

Download citation

Keywords

  • Stem cell therapy
  • Chronic heart failure
  • Advanced heart failure
  • LVAD