Heart Failure–Induced Skeletal Muscle Wasting

Abstract

Purpose of Review

Heart failure (HF) is a structural or functional cardiac abnormality which leads to failure of the heart to deliver oxygen commensurately with the requirements of the tissues and it may progress to a generalized wasting of skeletal muscle, fat tissue, and bone tissue (cardiac cachexia). Clinically, dyspnea, fatigue, and exercise intolerance are some typical signs and symptoms that characterize HF patients. This review focused on the phenotypic characteristics of HF-induced skeletal myopathy as well as the mechanisms of muscle wasting due to HF and highlighted possible therapeutic strategies for skeletal muscle wasting in HF.

Recent Findings

The impaired exercise capacity of those patients is not attributed to the reduced blood flow in the exercising muscles, but rather to abnormal metabolic responses, myocyte apoptosis and atrophy of skeletal muscle. Specifically, the development of skeletal muscle wasting in chronic HF is characterized by structural, metabolic, and functional abnormalities in skeletal muscle and may be a result not only of reduced physical activity, but also of metabolic or hormonal derangements that favour catabolism over anabolism. In particular, abnormal energy metabolism, mitochondrial dysfunction, transition of myofibers from type I to type II, muscle atrophy, and reduction in muscular strength are included in skeletal muscle abnormalities which play a central role in the decreased exercise capacity of HF patients.

Summary

Skeletal muscle alterations and exercise intolerance observed in HF are reversible by exercise training, since it is the only demonstrated intervention able to improve skeletal muscle metabolism, growth factor activity, and functional capacity and to reverse peripheral abnormalities.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    PubMed  Google Scholar 

  2. 2.

    Halapas A, Papalois A, Stauropoulou A, Philippou A, Pissimissis N, Chatzigeorgiou A, et al. In vivo models for heart failure research. In Vivo. 2008;22(6):767–80.

    CAS  PubMed  Google Scholar 

  3. 3.

    von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol. 2017;14(6):323–41.

    Google Scholar 

  4. 4.

    Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34.

    CAS  PubMed  Google Scholar 

  5. 5.

    Akashi YJ, Springer J, Anker SD. Cachexia in chronic heart failure: prognostic implications and novel therapeutic approaches. Curr Heart Fail Rep. 2005;2(4):198–203.

    PubMed  Google Scholar 

  6. 6.

    Fulster S, Tacke M, Sandek A, Ebner N, Tschope C, Doehner W, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):512–9.

    PubMed  Google Scholar 

  7. 7.

    Anker SD, Ponikowski PP, Clark AL, Leyva F, Rauchhaus M, Kemp M, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20(9):683–93.

    CAS  PubMed  Google Scholar 

  8. 8.

    Itoh K, Osada N, Inoue K, Samejima H, Seki A, Omiya K, et al. Relationship between exercise intolerance and levels of neurohormonal factors and proinflammatory cytokines in patients with stable chronic heart failure. Int Heart J. 2005;46(6):1049–59.

    CAS  PubMed  Google Scholar 

  9. 9.

    Wong A. Frishman W. Cardiol Rev: Sarcopenia and Cardiac Dysfunction; 2019.

    Google Scholar 

  10. 10.

    Okita K, Kinugawa S, Tsutsui H. Exercise intolerance in chronic heart failure--skeletal muscle dysfunction and potential therapies. Circ J. 2013;77(2):293–300.

    CAS  PubMed  Google Scholar 

  11. 11.

    Valentova M, Anker SD, von Haehling S. Cardiac cachexia revisited: the role of wasting in heart failure. Heart Fail Clin. 2020;16(1):61–9.

    PubMed  Google Scholar 

  12. 12.

    Dam TT, Peters KW, Fragala M, Cawthon PM, Harris TB, McLean R, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci. 2014;69(5):584–90.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Emami A, Saitoh M, Valentova M, Sandek A, Evertz R, Ebner N, et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur J Heart Fail. 2018;20(11):1580–7.

    CAS  PubMed  Google Scholar 

  14. 14.

    Calvani R, Picca A, Marini F, Biancolillo A, Cesari M, Pesce V, et al. The “BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons” (BIOSPHERE) study: rationale, design and methods. Eur J Intern Med. 2018;56:19–25.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Steinbeck L, Ebner N, Valentova M, Bekfani T, Elsner S, Dahinden P, et al. Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur J Heart Fail. 2015;17(12):1283–93.

    CAS  PubMed  Google Scholar 

  16. 16.

    Zizola C, Schulze PC. Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev. 2013;18(5):623–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Rehn TA, Munkvik M, Lunde PK, Sjaastad I, Sejersted OM. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning? Heart Fail Rev. 2012;17(3):421–36.

    CAS  PubMed  Google Scholar 

  18. 18.

    Piepoli MF, Coats AJ. The 'skeletal muscle hypothesis in heart failure’ revised. Eur Heart J. 2013;34(7):486–8.

    PubMed  Google Scholar 

  19. 19.

    Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, et al. Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation. 1989;80(5):1338–46.

    CAS  PubMed  Google Scholar 

  20. 20.

    Chati Z, Zannad F, Robin-Lherbier B, Escanye JM, Jeandel C, Robert J, et al. Contribution of specific skeletal muscle metabolic abnormalities to limitation of exercise capacity in patients with chronic heart failure: a phosphorus 31 nuclear magnetic resonance study. Am Heart J. 1994;128(4):781–92.

    CAS  PubMed  Google Scholar 

  21. 21.

    Massie B, Conway M, Yonge R, Frostick S, Ledingham J, Sleight P, et al. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation. 1987;76(5):1009–19.

    CAS  PubMed  Google Scholar 

  22. 22.

    Lang CC, Chomsky DB, Rayos G, Yeoh TK, Wilson JR. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure. J Appl Physiol (1985). 1997;82(1):257–61.

  23. 23.

    Katz SD, Maskin C, Jondeau G, Cocke T, Berkowitz R, LeJemtel T. Near-maximal fractional oxygen extraction by active skeletal muscle in patients with chronic heart failure. J Appl Physiol (1985). 2000;88(6):2138–42.

  24. 24.

    Williams AD, Selig S, Hare DL, Hayes A, Krum H, Patterson J, et al. Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle oxidative capacity. J Card Fail. 2004;10(2):141–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Schrepper A, Schwarzer M, Schope M, Amorim PA, Doenst T. Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity. J Mol Cell Cardiol. 2012;52(1):125–35.

    CAS  PubMed  Google Scholar 

  26. 26.

    Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, et al. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 1992;85(4):1364–73.

    CAS  PubMed  Google Scholar 

  27. 27.

    Mancini DM, Henson D, LaManca J, Levine S. Respiratory muscle function and dyspnea in patients with chronic congestive heart failure. Circulation. 1992;86(3):909–18.

    CAS  PubMed  Google Scholar 

  28. 28.

    Vescovo G, Dalla LL. Skeletal muscle apoptosis in experimental heart failure: the only link between inflammation and skeletal muscle wastage? Curr Opin Clin Nutr Metab Care. 2006;9(4):416–22.

    CAS  PubMed  Google Scholar 

  29. 29.

    Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85(5):1751–9.

    CAS  PubMed  Google Scholar 

  30. 30.

    Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, et al. Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol. 2001;38(4):947–54.

    CAS  PubMed  Google Scholar 

  31. 31.

    Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation. 1990;81(2):518–27.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lunde PK, Sjaastad I, Schiotz Thorud HM, Sejersted OM. Skeletal muscle disorders in heart failure. Acta Physiol Scand. 2001;171(3):277–94.

    CAS  PubMed  Google Scholar 

  33. 33.

    Miller MS, Vanburen P, Lewinter MM, Lecker SH, Selby DE, Palmer BM, et al. Mechanisms underlying skeletal muscle weakness in human heart failure: alterations in single fiber myosin protein content and function. Circ Heart Fail. 2009;2(6):700–6.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Okada Y, Toth MJ, Vanburen P. Skeletal muscle contractile protein function is preserved in human heart failure. J Appl Physiol (1985). 2008;104(4):952–7.

  35. 35.

    Duscha BD, Schulze PC, Robbins JL, Forman DE. Implications of chronic heart failure on peripheral vasculature and skeletal muscle before and after exercise training. Heart Fail Rev. 2008;13(1):21–37.

    PubMed  Google Scholar 

  36. 36.

    Miller MS, VanBuren P, LeWinter MM, Braddock JM, Ades PA, Maughan DW, et al. Chronic heart failure decreases cross-bridge kinetics in single skeletal muscle fibres from humans. J Physiol. 2010;588(Pt 20):4039–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Szentesi P, Bekedam MA, van Beek-Harmsen BJ, van der Laarse WJ, Zaremba R, Boonstra A, et al. Depression of force production and ATPase activity in different types of human skeletal muscle fibers from patients with chronic heart failure. J Appl Physiol (1985). 2005;99(6):2189–95.

  38. 38.

    Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994;72(2 Suppl):S36–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Agapitou V, Dimopoulos S, Kapelios C, Karatzanos E, Manetos C, Georgantas A, et al. Hormonal imbalance in relation to exercise intolerance and ventilatory inefficiency in chronic heart failure. J Heart Lung Transplant. 2013;32(4):431–6.

    PubMed  Google Scholar 

  40. 40.

    Josiak K, Jankowska EA, Piepoli MF, Banasiak W, Ponikowski P. Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J Cachexia Sarcopenia Muscle. 2014;5(4):287–96.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Curcio F, Testa G, Liguori I, Papillo M, Flocco V, Panicara V, et al. Sarcopenia and heart failure. Nutrients. 2020;12(1).

  42. 42.

    Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol. 1981;47(1):33–9.

    CAS  PubMed  Google Scholar 

  43. 43.

    Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, et al. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation. 1988;78(2):320–6.

    CAS  PubMed  Google Scholar 

  44. 44.

    Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol. 1999;33(4):959–65.

    CAS  PubMed  Google Scholar 

  45. 45.

    Knezevic T, Myers VD, Gordon J, Tilley DG, Sharp TE 3rd, Wang J, et al. BAG3: a new player in the heart failure paradigm. Heart Fail Rev. 2015;20(4):423–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wilson JR, Mancini DM, Dunkman WB. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation. 1993;87(2):470–5.

    CAS  PubMed  Google Scholar 

  47. 47.

    Piepoli MF, Guazzi M, Boriani G, Cicoira M, Corra U, Dalla Libera L, et al. Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I. Eur J Cardiovasc Prev Rehabil. 2010;17(6):637–42.

    PubMed  Google Scholar 

  48. 48.

    Green DJ, Panizzolo FA, Lloyd DG, Rubenson J, Maiorana AJ. Soleus muscle as a surrogate for health status in human heart failure. Exerc Sport Sci Rev. 2016;44(1):45–50.

    PubMed  Google Scholar 

  49. 49.

    Piepoli MF, Guazzi M, Boriani G, Cicoira M, Corra U, Dalla Libera L, et al. Exercise intolerance in chronic heart failure: mechanisms and therapies. Part II. Eur J Cardiovasc Prev Rehabil. 2010;17(6):643–8.

    PubMed  Google Scholar 

  50. 50.

    Torre-Amione G. Immune activation in chronic heart failure. Am J Cardiol. 2005;95(11A):3C-8C; discussion 38C-40C.

  51. 51.

    Van Linthout S, Tschope C. Inflammation - cause or consequence of heart failure or both? Curr Heart Fail Rep. 2017;14(4):251–65.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236–41.

    CAS  PubMed  Google Scholar 

  53. 53.

    Anker SD, Clark AL, Kemp M, Salsbury C, Teixeira MM, Hellewell PG, et al. Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol. 1997;30(4):997–1001.

    CAS  PubMed  Google Scholar 

  54. 54.

    Sharma R, Anker SD. Immune and neurohormonal pathways in chronic heart failure. Congest Heart Fail. 2002;8(1):23–8 48.

    CAS  PubMed  Google Scholar 

  55. 55.

    Adams V, Linke A, Gielen S, Erbs S, Hambrecht R, Schuler G. Modulation of Murf-1 and MAFbx expression in the myocardium by physical exercise training. Eur J Cardiovasc Prev Rehabil. 2008;15(3):293–9.

    PubMed  Google Scholar 

  56. 56.

    Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406.

    CAS  PubMed  Google Scholar 

  57. 57.

    Sishi BJ, Engelbrecht AM. Tumor necrosis factor alpha (TNF-alpha) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine. 2011;54(2):173–84.

    CAS  PubMed  Google Scholar 

  58. 58.

    Larsen AI, Valborgland T, Ogne C, Lindal S, Halvorsen B, Munk PS, et al. Plasma tumour necrosis factor correlates with mRNA expression of tumour necrosis factor and mitochondrial transcription factors in skeletal muscle in patients with chronic heart failure treated with cardiac resynchronization therapy: potential role in myopathy. Eur J Prev Cardiol. 2019;8:2047487319855796.

    Google Scholar 

  59. 59.

    Springer J, Tschirner A, Haghikia A, von Haehling S, Lal H, Grzesiak A, et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J. 2013;35(14):932–41.

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Cicoira M, Bolger AP, Doehner W, Rauchhaus M, Davos C, Sharma R, et al. High tumour necrosis factor-alpha levels are associated with exercise intolerance and neurohormonal activation in chronic heart failure patients. Cytokine. 2001;15(2):80–6.

    CAS  PubMed  Google Scholar 

  61. 61.

    Toth MJ, Ades PA, Tischler MD, Tracy RP, LeWinter MM. Immune activation is associated with reduced skeletal muscle mass and physical function in chronic heart failure. Int J Cardiol. 2006;109(2):179–87.

    PubMed  Google Scholar 

  62. 62.

    Philippou A, Maridaki M, Theos A, Koutsilieris M. Cytokines in muscle damage. Adv Clin Chem. 2012;58:49–87.

    CAS  PubMed  Google Scholar 

  63. 63.

    Adams V, Yu J, Mobius-Winkler S, Linke A, Weigl C, Hilbrich L, et al. Increased inducible nitric oxide synthase in skeletal muscle biopsies from patients with chronic heart failure. Biochem Mol Med. 1997;61(2):152–60.

    CAS  PubMed  Google Scholar 

  64. 64.

    Riede UN, Forstermann U, Drexler H. Inducible nitric oxide synthase in skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 1998 Oct;32(4):964–9.

    CAS  PubMed  Google Scholar 

  65. 65.

    Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, et al. Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res. 2002;54(1):95–104.

    CAS  PubMed  Google Scholar 

  66. 66.

    Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90.

    CAS  PubMed  Google Scholar 

  68. 68.

    Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H. Skeletal muscle abnormalities in heart failure. Int Heart J. 2015;56(5):475–84.

    CAS  PubMed  Google Scholar 

  69. 69.

    Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988–98.

    CAS  PubMed  Google Scholar 

  70. 70.

    Voltarelli VA, Bechara LR, Bacurau AV, Mattos KC, Dourado PM, Bueno CR Jr, et al. Lack of beta2 -adrenoceptors aggravates heart failure-induced skeletal muscle myopathy in mice. J Cell Mol Med. 2014;18(6):1087–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Inoue N, Kinugawa S, Suga T, Yokota T, Hirabayashi K, Kuroda S, et al. Angiotensin II-induced reduction in exercise capacity is associated with increased oxidative stress in skeletal muscle. Am J Physiol Heart Circ Physiol. 2012;302(5):H1202–10.

    CAS  PubMed  Google Scholar 

  72. 72.

    Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, et al. Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle. Exp Physiol. 2015;100(3):312–22.

    CAS  PubMed  Google Scholar 

  73. 73.

    Philippou A, Barton ER. Optimizing IGF-I for skeletal muscle therapeutics. Growth Hormon IGF Res. 2014;24(5):157–63.

    CAS  Google Scholar 

  74. 74.

    Philippou A, Maridaki M, Halapas A, Koutsilieris M. The role of the insulin-like growth factor 1 (IGF-1) in skeletal muscle physiology. In Vivo. 2007;21(1):45–54.

    CAS  PubMed  Google Scholar 

  75. 75.

    Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2013;49(1):59–68.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Yu J, et al. Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol. 2002;39(7):1175–81.

    CAS  PubMed  Google Scholar 

  77. 77.

    Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, et al. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology. 2001;142(4):1489–96.

    CAS  PubMed  Google Scholar 

  78. 78.

    Schulze PC, Spate U. Insulin-like growth factor-1 and muscle wasting in chronic heart failure. Int J Biochem Cell Biol. 2005;37(10):2023–35.

    CAS  PubMed  Google Scholar 

  79. 79.

    Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest. 2005;115(2):451–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Zheng LF, Chen PJ, Xiao WH. Signaling pathways controlling skeletal muscle mass. Sheng Li Xue Bao. 2019;71(4):671–9.

    PubMed  Google Scholar 

  81. 81.

    Anker SD, Volterrani M, Pflaum CD, Strasburger CJ, Osterziel KJ, Doehner W, et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol. 2001;38(2):443–52.

    CAS  PubMed  Google Scholar 

  82. 82.

    Mangner N, Weikert B, Bowen TS, Sandri M, Hollriegel R, Erbs S, et al. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm. J Cachexia Sarcopenia Muscle. 2015;6(4):381–90.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Fujita N, Fujino H, Sakamoto H, Takegaki J, Deie M. Time course of ubiquitin-proteasome and macroautophagy-lysosome pathways in skeletal muscle in rats with heart failure. Biomed Res. 2015;36(6):383–92.

    CAS  PubMed  Google Scholar 

  84. 84.

    Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 2005;19(3):362–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Han HQ, Mitch WE. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care. 2011;5(4):334–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol. 2011;300(6):H1973–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Gruson D, Ahn SA, Ketelslegers JM, Rousseau MF. Increased plasma myostatin in heart failure. Eur J Heart Fail. 2011;13(7):734–6.

    CAS  PubMed  Google Scholar 

  88. 88.

    Manetos C, Dimopoulos S, Tzanis G, Vakrou S, Tasoulis A, Kapelios C, et al. Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance, ventilatory inefficiency, and impaired autonomic control in heart failure. J Heart Lung Transplant. 2011;30(12):1403–8.

    PubMed  Google Scholar 

  89. 89.

    Tzanis G, Manetos C, Dimopoulos S, Vasileiadis I, Malliaras K, Kaldara E, et al. Attenuated microcirculatory response to maximal exercise in patients with chronic heart failure. J Cardiopulm Rehabil Prev. 2016;36(1):33–7.

    PubMed  Google Scholar 

  90. 90.

    Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. 2J Cardiol. 2013;62(5):307–13.

    Google Scholar 

  91. 91.

    Saitoh M, Dos Santos MR, Ebner N, Emami A, Konishi M, Ishida J, et al. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from studies investigating co-morbidities aggravating heart failure. Wien Klin Wochenschr. 2016;128(Suppl 7):497–504.

    CAS  PubMed  Google Scholar 

  92. 92.

    Konishi M, Ishida J, von Haehling S, Anker SD, Springer J. Nutrition in cachexia: from bench to bedside. J Cachexia Sarcopenia Muscle. 2016;7(2):107–9.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Tzanis G, Dimopoulos S, Agapitou V, Nanas S. Exercise intolerance in chronic heart failure: the role of cortisol and the catabolic state. Curr Heart Fail Rep. 2014;11(1):70–9.

    CAS  PubMed  Google Scholar 

  94. 94.

    Sandek A, Doehner W, Anker SD, von Haehling S. Nutrition in heart failure: an update. Curr Opin Clin Nutr Metab Care. 2009;12(4):384–91.

    PubMed  Google Scholar 

  95. 95.

    Jannig PR, Moreira JB, Bechara LR, Bozi LH, Bacurau AV, Monteiro AW, et al. Autophagy signaling in skeletal muscle of infarcted rats. PLoS One. 2014;9(1):e85820.

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Lena A, Ebner N, Coats AJS, Anker MS. Cardiac cachexia: the mandate to increase clinician awareness. Curr Opin Support Palliat Care. 2019;13(4):298–304.

    PubMed  Google Scholar 

  97. 97.

    Saitoh M, Ebner N, von Haehling S, Anker SD, Springer J. Therapeutic considerations of sarcopenia in heart failure patients. Expert Rev Cardiovasc Ther. 2018;16(2):133–42.

    CAS  PubMed  Google Scholar 

  98. 98.

    Vest AR, Chan M, Deswal A, Givertz MM, Lekavich C, Lennie T, et al. Nutrition, obesity, and cachexia in patients with heart failure: a consensus statement from the Heart Failure Society of America scientific statements committee. J Card Fail. 2019;25(5):380–400.

    PubMed  Google Scholar 

  99. 99.

    Suzuki T, Palus S, Springer J. Skeletal muscle wasting in chronic heart failure. ESC Heart Fail. 2018;5(6):1099–107.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Collamati A, Marzetti E, Calvani R, Tosato M, D'Angelo E, Sisto AN, et al. Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol. 2016;13(7):615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Liu H, Liu R, Xiong Y, Li X, Wang X, Ma Y, et al. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2. Amino Acids. 2014;46(8):1971–9.

    CAS  PubMed  Google Scholar 

  102. 102.

    Aquilani R, Opasich C, Gualco A, Verri M, Testa A, Pasini E, et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail. 2008;10(11):1127–35.

    CAS  PubMed  Google Scholar 

  103. 103.

    Pineda-Juarez JA, Sanchez-Ortiz NA, Castillo-Martinez L, Orea-Tejeda A, Cervantes-Gaytan R, Keirns-Davis C, et al. Changes in body composition in heart failure patients after a resistance exercise program and branched chain amino acid supplementation. Clin Nutr. 2016;35(1):41–7.

    CAS  PubMed  Google Scholar 

  104. 104.

    Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16(9):740–7.

    PubMed  Google Scholar 

  105. 105.

    Nitsa A, Toutouza M, Machairas N, Mariolis A, Philippou A, Koutsilieris M. Vitamin D in cardiovascular disease. In Vivo. 2018;32(5):977–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Boxer RS, Dauser DA, Walsh SJ, Hager WD, Kenny AM. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J Am Geriatr Soc. 2008;56(3):454–61.

    PubMed  Google Scholar 

  107. 107.

    Wang T, Liu Z, Fu J, Min Z. Meta-analysis of vitamin D supplementation in the treatment of chronic heart failure. Scand Cardiovasc J. 2019;53(3):110–6.

    CAS  PubMed  Google Scholar 

  108. 108.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed). 2016;69(12):1167.

  109. 109.

    van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M. Minerals and sarcopenia; the role of calcium, Iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc. 2018;19(1):6–11 e3.

    PubMed  Google Scholar 

  110. 110.

    Rolfe M, Kamel A, Ahmed MM, Kramer J. Pharmacological management of cardiac cachexia: a review of potential therapy options. Heart Fail Rev. 2019;24(5):617–23.

    CAS  PubMed  Google Scholar 

  111. 111.

    Sanders PM, Russell ST, Tisdale MJ. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br J Cancer. 2005;93(4):425–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Zhou LS, Xu LJ, Wang XQ, Huang YH, Xiao Q. Effect of angiotensin-converting enzyme inhibitors on physical function in elderly subjects: a systematic review and meta-analysis. Drugs Aging. 2015;32(9):727–35.

    CAS  PubMed  Google Scholar 

  113. 113.

    Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83.

    CAS  PubMed  Google Scholar 

  114. 114.

    Drescher C, Konishi M, Ebner N, Springer J. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle. 2016;6(4):303–11.

    Google Scholar 

  115. 115.

    Clark AL, Coats AJS, Krum H, Katus HA, Mohacsi P, Salekin D, et al. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: results from the COPERNICUS trial. J Cachexia Sarcopenia Muscle. 2017;8(4):549–56.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Kamalakkannan G, Petrilli CM, George I, LaManca J, McLaughlin BT, Shane E, et al. Clenbuterol increases lean muscle mass but not endurance in patients with chronic heart failure. J Heart Lung Transplant. 2008;27(4):457–61.

    PubMed  Google Scholar 

  117. 117.

    Harrington D, Chua TP, Coats AJ. The effect of salbutamol on skeletal muscle in chronic heart failure. Int J Cardiol. 2000;73(3):257–65.

    CAS  PubMed  Google Scholar 

  118. 118.

    von Haehling S. The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc. 2015;74(4):367–77.

    Google Scholar 

  119. 119.

    Volterrani M, Rosano G, Iellamo F. Testosterone and heart failure. Endocrine. 2012;42(2):272–7.

    CAS  PubMed  Google Scholar 

  120. 120.

    Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54(10):919–27.

    CAS  PubMed  Google Scholar 

  121. 121.

    Dos Santos MR, Sayegh AL, Bacurau AV, Arap MA, Brum PC, Pereira RM, et al. Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency. Mayo Clin Proc. 2016;91(5):575–86.

    PubMed  Google Scholar 

  122. 122.

    Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27(1):57–64.

    CAS  PubMed  Google Scholar 

  123. 123.

    Nagaya N, Moriya J, Yasumura Y, Uematsu M, Ono F, Shimizu W, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110(24):3674–9.

    CAS  PubMed  Google Scholar 

  124. 124.

    Piepoli MF, Conraads V, Corra U, Dickstein K, Francis DP, Jaarsma T, et al. Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011;13(4):347–57.

    PubMed  Google Scholar 

  125. 125.

    Brown JC, Harhay MO, Harhay MN. Physical activity, diet quality, and mortality among community-dwelling prefrail and frail older adults. J Nutr Gerontol Geriatr. 2016;35(4):253–66.

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Tzanis G, Philippou A, Karatzanos E, Dimopoulos S, Kaldara E, Nana E, et al. Effects of high-intensity interval exercise training on skeletal myopathy of chronic heart failure. J Card Fail. 2017;23(1):36–46.

    PubMed  Google Scholar 

  127. 127.

    Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, et al. Expression of IGF-1 isoforms after exercise-induced muscle damage in humans: characterization of the MGF E peptide actions in vitro. In Vivo. 2009;23(4):567–75.

    CAS  PubMed  Google Scholar 

  128. 128.

    Tzanis G, Philippou A, Dimopoulos S, Koutsilieris M, Nanas S. Insulin-like growth factor-1 bioregulation system abnormalities: another explanatory mechanism of exercise intolerance in heart failure. JACC Heart Fail. 2017;5(2):155–6.

    PubMed  Google Scholar 

  129. 129.

    Tryfonos A, Philippou A, Karatzanos E, Nanas S. Chronic heart failure: the role of exercise in the associated myopathy and angiogenesis of skeletal muscle. ARCHIVES OF HELLENIC MEDICINE. 2018;35(3):313–21.

  130. 130.

    Bouchla A, Karatzanos E, Dimopoulos S, Tasoulis A, Agapitou V, Diakos N, et al. The addition of strength training to aerobic interval training: effects on muscle strength and body composition in CHF patients. J Cardiopulm Rehabil Prev. 2011;31(1):47–51.

    PubMed  Google Scholar 

  131. 131.

    Georgantas A, Dimopoulos S, Tasoulis A, Karatzanos E, Pantsios C, Agapitou V, et al. Beneficial effects of combined exercise training on early recovery cardiopulmonary exercise testing indices in patients with chronic heart failure. J Cardiopulm Rehabil Prev. 2014;34(6):378–85.

    PubMed  Google Scholar 

  132. 132.

    Philippou A, Maridaki M, Bogdanis GC. Angle-specific impairment of elbow flexors strength after isometric exercise at long muscle length. J Sports Sci. 2003;21(10):859–65.

    PubMed  Google Scholar 

  133. 133.

    Philippou A, Maridaki M, Bogdanis G, Halapas A, Koutsilieris M. Changes in the mechanical properties of human quadriceps muscle after eccentric exercise. In Vivo. 2009;23(5):859–65.

    CAS  PubMed  Google Scholar 

  134. 134.

    Philippou A, Koutsilieris M, Maridaki M. Changes in kinematic variables at various muscle lengths of human elbow flexors following eccentric exercise. J Muscle Res Cell Motil. 2012;33(3–4):167–75.

    PubMed  Google Scholar 

  135. 135.

    Pu CT, Johnson MT, Forman DE, Hausdorff JM, Roubenoff R, Foldvari M, et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol (1985). 2001;90(6):2341–50.

  136. 136.

    Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig exercise intervention in chronic heart failure and aging catabolism study. Circulation. 2012;125(22):2716–27.

    CAS  PubMed  Google Scholar 

  137. 137.

    Cunha TF, Bacurau AV, Moreira JB, Paixao NA, Campos JC, Ferreira JC, et al. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS One. 2012;7(8):e41701.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Smart NA, Steele M. The effect of physical training on systemic proinflammatory cytokine expression in heart failure patients: a systematic review. Congest Heart Fail. 2011;17(3):110–4.

    CAS  PubMed  Google Scholar 

  139. 139.

    Lenk K, Erbs S, Hollriegel R, Beck E, Linke A, Gielen S, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2011;19(3):404–11.

    PubMed  Google Scholar 

  140. 140.

    Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):861–8.

    CAS  PubMed  Google Scholar 

  141. 141.

    Hollriegel R, Beck EB, Linke A, Adams V, Mobius-Winkler S, Mangner N, et al. Anabolic effects of exercise training in patients with advanced chronic heart failure (NYHA IIIb): impact on ubiquitin-protein ligases expression and skeletal muscle size. Int J Cardiol. 2012;167(3):975–80.

    PubMed  Google Scholar 

  142. 142.

    Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, et al. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol. 1993;21(5):1101–6.

    CAS  PubMed  Google Scholar 

  143. 143.

    Roditis P, Dimopoulos S, Sakellariou D, Sarafoglou S, Kaldara E, Venetsanakos J, et al. The effects of exercise training on the kinetics of oxygen uptake in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2007;14(2):304–11.

    PubMed  Google Scholar 

  144. 144.

    Ebner N, Anker SD, von Haehling S. Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 12th Cachexia conference. J Cachexia Sarcopenia Muscle. 2020;11(1):274–85.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Koutsilieris.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Comorbidities of Heart Failure

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Philippou, A., Xanthis, D., Chryssanthopοulos, C. et al. Heart Failure–Induced Skeletal Muscle Wasting. Curr Heart Fail Rep (2020). https://doi.org/10.1007/s11897-020-00468-w

Download citation

Keywords

  • Heart failure
  • Muscle atrophy
  • Muscle wasting
  • Myopathy
  • Sarcopenia