Skip to main content

Advertisement

Log in

Impact of Sacubitril-Valsartan on Markers of Glomerular Function

  • Biomarkers of Heart Failure (WH Tang & J Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide pathophysiological and clinical insights into the effects of sacubitril/valsartan on glomerular function.

Recent Findings

Heart failure and glomerular dysfunction are closely intertwined. In addition to reduced heart failure hospitalization and all-cause mortality, patients treated with sacubitril/valsartan have a slower deterioration of glomerular filtration rate over time compared with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers.

Summary

The effects of sacubitril/valsartan are probably mediated through enhancement of natriuretic peptides, reduction of glomerular inflammation and fibrosis, and relaxation of mesangial cells and podocytes. Further studies will elucidate underlying pathophysiological mechanisms of sacubitril/valsartan on glomerular function and their prognostic significance in subjects with and without heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016;18(8):891–975.

    PubMed  Google Scholar 

  2. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    PubMed  Google Scholar 

  3. •• Voors AA, Gori M, LCY L, Claggett B, Zile MR, Pieske B, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17(5):510–7 Post-hoc analysis of the PARAMOUNT trial, showing that sacubitril/valsartan led to a slower rate of decrease in eGFR and to a slight increase in UACR compared to ARB in patients with HFpEF.

    CAS  PubMed  Google Scholar 

  4. •• Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, et al. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail. 2018;6(6):489–98 Post-hoc analysis of the PARADIGM-HF trial, showing that sacubitril/valsartan led to a slower rate of decrease in eGFR and to a slight increase in UACR compared to ACE-I in patients with HFrEF.

    PubMed  Google Scholar 

  5. • Spannella F, Marini M, Giulietti F, Rosettani G, Francioni M, Perna GP, et al. Renal effects of sacubitril/valsartan in heart failure with reduced ejection fraction: a real life 1-year follow-up study. Intern Emerg Med. 2019;14(8):1287–97 A real-life study showing that patients on sacubitril/valsartan had a significant improvement in eGFR after 12 months, compared to historical controls. A greater benefit in subjects aged < 65 years and patients with CKD was also observed.

    PubMed  PubMed Central  Google Scholar 

  6. Layton AT. Modeling transport and flow regulatory mechanisms of the kidney. ISRN Biomath. 2012;2012:1–18.

    Google Scholar 

  7. Vallon V. Tubuloglomerular feedback and the control of glomerular filtration rate. Physiology. 2003;18(4):169–74.

    CAS  Google Scholar 

  8. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82.

    CAS  PubMed  Google Scholar 

  9. Verbrugge FH, Dupont M, Steels P, Grieten L, Swennen Q, Tang WHW, et al. The kidney in congestive heart failure: “are natriuresis, sodium, and diuretics really the good, the bad and the ugly?”. Eur J Heart Fail. 2014;16(2):133–42.

    CAS  PubMed  Google Scholar 

  10. Lamb EJ, Stevens PE. Estimating and measuring glomerular filtration rate: methods of measurement and markers for estimation. Curr Opin Nephrol Hypertens. 2014;23(3):258–66.

    CAS  PubMed  Google Scholar 

  11. • Mullens W, Damman K, Testani JM, Martens P, Mueller C, Lassus J, et al. Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020:ejhf.1697 Recent expert consensus paper of the Heart Failure Association, which incorporates insights into the interpretation of renal function assessment in the different heart failure states.

  12. Mullens W, Damman K, Harjola V-P, Mebazaa A, Brunner La Rocca H-P, Martens P, et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology: diuretics in heart failure. Eur J Heart Fail. 2019;21(2):137–55.

    PubMed  Google Scholar 

  13. Tang WHW, Verbrugge FH, Mullens W. Cardiorenal syndrome in heart failure. Cham: Springer International Publishing; 2020.

    Google Scholar 

  14. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    PubMed  Google Scholar 

  15. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    PubMed  PubMed Central  Google Scholar 

  16. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: “Guyton revisited.”. Eur Heart J. 2005;26(1):11–7.

    PubMed  Google Scholar 

  17. Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of epinephrine in TNF and IL-6 production from isolated perfused rat liver. Am J Phys. 1995;268(4 Pt 2):R896–901.

    CAS  Google Scholar 

  18. Bleeke T, Zhang H, Madamanchi N, Patterson C, Faber JE. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res. 2004;94(1):37–45.

    CAS  PubMed  Google Scholar 

  19. DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083–8.

    CAS  PubMed  Google Scholar 

  20. Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Investig. 2003;33(9):769–78.

    CAS  Google Scholar 

  21. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000;35(3):681–9.

    CAS  PubMed  Google Scholar 

  22. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102(2):203–10.

    CAS  PubMed  Google Scholar 

  23. Givertz MM, Postmus D, Hillege HL, Mansoor GA, Massie BM, Davison BA, et al. Renal function trajectories and clinical outcomes in acute heart failure. Circ Heart Fail. 2014;7(1):59–67.

    CAS  PubMed  Google Scholar 

  24. Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJV, Yusuf S, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671–8.

    PubMed  Google Scholar 

  25. Löfman I, Szummer K, Hagerman I, Dahlström U, Lund LH, Jernberg T. Prevalence and prognostic impact of kidney disease on heart failure patients. Open Heart. 2016;3(1):e000324.

    PubMed  PubMed Central  Google Scholar 

  26. Anand IS, Bishu K, Rector TS, Ishani A, Kuskowski MA, Cohn JN. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensin-converting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009;120(16):1577–84.

    CAS  PubMed  Google Scholar 

  27. Casado J, Montero M, Formiga F, Carrera M, Urrutia A, Arévalo JC, et al. Clinical characteristics and prognostic influence of renal dysfunction in heart failure patients with preserved ejection fraction. Eur J Intern Med. 2013;24(7):677–83.

    PubMed  Google Scholar 

  28. McAlister FA, Ezekowitz J, Tarantini L, Squire I, Komajda M, Bayes-Genis A, et al. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: impact of the new chronic kidney disease-epidemiology collaboration group formula. Circ Heart Fail. 2012;5(3):309–14.

    PubMed  Google Scholar 

  29. Rusinaru D, Buiciuc O, Houpe D, Tribouilloy C. Renal function and long-term survival after hospital discharge in heart failure with preserved ejection fraction. Int J Cardiol. 2011;147(2):278–82.

    PubMed  Google Scholar 

  30. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005.

    PubMed  PubMed Central  Google Scholar 

  31. Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.

    PubMed  Google Scholar 

  32. Wong PCY, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. Adv Physiol Educ. 2017;41(2):179–85.

    PubMed  Google Scholar 

  33. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML. Diverse biological actions of atrial natriuretic peptide. Physiol Rev. 1990;70(3):665–99.

    CAS  PubMed  Google Scholar 

  34. Ohishi K, Hishida A, Honda N. Direct vasodilatory action of atrial natriuretic factor on canine glomerular afferent arterioles. Am J Phys. 1988;255(3 Pt 2):F415–20.

    CAS  Google Scholar 

  35. Veldkamp PJ, Carmines PK, Inscho EW, Navar LG. Direct evaluation of the microvascular actions of ANP in juxtamedullary nephrons. Am J Phys. 1988;254(3 Pt 2):F440–4.

    CAS  Google Scholar 

  36. Potter LR. Natriuretic peptide metabolism, clearance and degradation: natriuretic peptide metabolism. FEBS J. 2011;278(11):1808–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kerr MA, Kenny AJ. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974;137(3):477–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC Jr. Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2012;34(12):886–93.

    PubMed  PubMed Central  Google Scholar 

  39. Turner AJ, Tanzawa K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J. 1997;11(5):355–64.

    CAS  PubMed  Google Scholar 

  40. Watanabe Y, Nakajima K, Shimamori Y, Fujimoto Y. Comparison of the hydrolysis of the three types of natriuretic peptides by human kidney neutral Endopeptidase 24.11. Biochem Mol Med. 1997;61(1):47–51.

    CAS  PubMed  Google Scholar 

  41. Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J. 1993;291(1):83–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stephenson SL, Kenny AJ. Metabolism of neuropeptides. Hydrolysis of the angiotensins, bradykinin, substance P and oxytocin by pig kidney microvillar membranes. Biochem J. 1987;241(1):237–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fagny C, Michel A, Léonard I, Berkenboom G, Fontaine J, Deschodt-Lanckman M. In vitro degradation of endothelin-1 by endopeptidase 24.11 (enkephalinase). Peptides. 1991;12(4):773–8.

    CAS  PubMed  Google Scholar 

  44. Vijayaraghavan J, Scicli AG, Carretero OA, Slaughter C, Moomaw C, Hersh LB. The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase). J Biol Chem. 1990;265(24):14150–5.

    CAS  PubMed  Google Scholar 

  45. Mulè G, Sorce A, Nardi E, Geraci G, Cottone S. The nephroprotective effect of sacubitril/valsartan in heart failure: insights from the real-life clinical setting. Intern Emerg Med. 2019;14(8):1205–8.

    PubMed  Google Scholar 

  46. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95.

    CAS  PubMed  Google Scholar 

  47. Fogo AB. Glomerular hypertension, abnormal glomerular growth, and progression of renal diseases. Kidney Int. 2000;57:S15–21.

    Google Scholar 

  48. Lessa LMA, Carraro-Lacroix LR, Crajoinas RO, Bezerra CN, Dariolli R, Girardi ACC, et al. Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol. 2012;303(10):F1399–408.

    CAS  PubMed  Google Scholar 

  49. Mullens W, Martens P. Exploiting the natriuretic peptide pathway to preserve glomerular filtration in heart failure. JACC Heart Fail. 2018;6(6):499–502.

    PubMed  Google Scholar 

  50. Jing W, Vaziri ND, Nunes A, Suematsu Y, Farzaneh T, Khazaeli M, et al. LCZ696 (Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD. Am J Transl Res. 2017;9(12):5473–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;99:S57–65.

    CAS  Google Scholar 

  52. Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2009;302(2):148–58.

    CAS  PubMed  Google Scholar 

  53. Kim HJ, Sato T, Rodríguez-Iturbe B, Vaziri ND. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther. 2011;337(3):583–90.

    CAS  PubMed  Google Scholar 

  54. Rosón MI, Toblli JE, Della Penna SL, Gorzalczany S, Pandolfo M, Cavallero S, et al. Renal protective role of atrial natriuretic peptide in acute sodium overload-induced inflammatory response. Am J Nephrol. 2006;26(6):590–601.

    PubMed  Google Scholar 

  55. Chatterjee PK, Hawksworth GM, McLay JS. Cytokine-stimulated nitric oxide production in the human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism? Exp Nephrol. 1999;7(5–6):438–48.

    CAS  PubMed  Google Scholar 

  56. Kiemer AK, Vollmar AM, Bilzer M, Gerwig T, Gerbes AL. Atrial natriuretic peptide reduces expression of TNF-alpha mRNA during reperfusion of the rat liver upon decreased activation of NF-kappaB and AP-1. J Hepatol. 2000;33(2):236–46.

    CAS  PubMed  Google Scholar 

  57. Vicent L, Esteban-Fernández A, Gómez-Bueno M, De-Juan J, Díez-Villanueva P, Iniesta ÁM, et al. Clinical profile of a nonselected population treated with Sacubitril/valsartan is different from PARADIGM-HF trial. J Cardiovasc Pharmacol. 2018;72(2):112–6.

    CAS  PubMed  Google Scholar 

  58. Chang H-Y, Feng A-N, Fong M-C, Hsueh C-W, Lai W-T, Huang K-C, et al. Sacubitril/valsartan in heart failure with reduced ejection fraction patients: real world experience on advanced chronic kidney disease, hypotension, and dose escalation. J Cardiol. 2019;74(4):372–80.

    PubMed  Google Scholar 

  59. •• Haynes R, Judge PK, Staplin N, Herrington WG, Storey BC, Bethel A, et al. Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease: a randomized double-blind trial. Circulation. 2018;138(15):1505–14 Randomized controlled trial testing sacubitril/valsartan versus ARB in patients with CKD, mostly without HF. After 12 months, no difference in eGFR and albuminuria were found between the two groups.

    CAS  PubMed  Google Scholar 

  60. James M, Manns B. Neprilysin inhibition and effects on kidney function and surrogates of cardiovascular risk in chronic kidney disease. Circulation. 2018;138(15):1515–8.

    PubMed  Google Scholar 

  61. Braunwald E. Diabetes, heart failure, and renal dysfunction: the vicious circles. Prog Cardiovasc Dis. 2019;62(4):298–302.

    PubMed  Google Scholar 

  62. Antezana M, Sullivan SR, Usui M, Gibran N, Spenny M, Larsen J, et al. Neutral endopeptidase activity is increased in the skin of subjects with diabetic ulcers. J Invest Dermatol. 2002;119(6):1400–4.

    CAS  PubMed  Google Scholar 

  63. Hara H, Oh-hashi K, Yoneda S, Shimazawa M, Inatani M, Tanihara H, et al. Elevated neprilysin activity in vitreous of patients with proliferative diabetic retinopathy. Mol Vis. 2006;12:977–82.

    CAS  PubMed  Google Scholar 

  64. Chattington PD, Anderson JV, Rees LH, Leese GP, Peters JR, Vora JP. Atrial natriuretic peptide in type 2 diabetes mellitus: response to a physiological mixed meal and relationship to renal function. Diabet Med. 1998;15(5):375–9.

    CAS  PubMed  Google Scholar 

  65. Gans RO, Bilo HJ, Donker AJ. The renal response to exogenous insulin in non-insulin-dependent diabetes mellitus in relation to blood pressure and cardiovascular hormonal status. Nephrol Dial Transplant. 1996;11(5):794–802.

    CAS  PubMed  Google Scholar 

  66. • Packer M, Claggett B, Lefkowitz MP, JJV MM, Rouleau JL, Solomon SD, et al. Effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system: a secondary analysis of the PARADIGM-HF trial. Lancet Diabetes Endocrinol. 2018;6(7):547–54 Secondary analysis of the PARADIGM-HF trial, showing that the magnitude of the benefit of sacubitril/valsartan on slowing eGFR deterioration was larger in patients with diabetes versus those without.

    CAS  PubMed  Google Scholar 

  67. Velazquez EJ, Morrow DA, DeVore AD, Duffy CI, Ambrosy AP, McCague K, et al. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380(6):539–48.

    CAS  PubMed  Google Scholar 

  68. Grewal J, McKelvie RS, Persson H, Tait P, Carlsson J, Swedberg K, et al. Usefulness of N-terminal pro–brain natriuretic peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol. 2008;102(6):733–7.

    CAS  PubMed  Google Scholar 

  69. van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MPV, Bronzwaer JGF, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126(7):830–9.

    PubMed  Google Scholar 

  70. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.

    CAS  PubMed  Google Scholar 

Download references

Funding

Jeroen Dauw, Pieter Martens, and Wilfried Mullens are researchers for the Limburg Clinical Research Center (LCRC) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk (LSM), province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Mullens.

Ethics declarations

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tersalvi, G., Dauw, J., Martens, P. et al. Impact of Sacubitril-Valsartan on Markers of Glomerular Function. Curr Heart Fail Rep 17, 145–152 (2020). https://doi.org/10.1007/s11897-020-00463-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00463-1

Keywords

Navigation