Skip to main content

Advertisement

Log in

Contemporary Management Strategies in VAD Infection

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (A Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The use of durable ventricular assist devices (VAD) to manage end-stage heart failure is increasing, but infection remains a leading cause of morbidity and mortality among patients with VAD. In this review, we synthesize recent data pertaining to the epidemiology, diagnosis, management, and prevention of VAD infections, discuss transplant considerations in patients with VAD infections, and highlight remaining knowledge gaps. We also present a conceptual framework for treating clinicians to approach these infections that draws on the same principles that guide the treatment of analogous infections that occur in patients without VAD.

Recent Findings

Despite advances in device design, surgical techniques, and preventative interventions, more than a third of VAD recipients still experience infection as an adverse outcome. Positron emission tomography has emerged as a promising modality for identifying and characterizing VAD infections. High-quality data to support many of the routine therapeutic strategies currently used for VAD infections—including suppressive antibiotic therapy, surgical debridement/device exchange, and novel antimicrobials for emerging multidrug-resistant organisms—remain limited. Although pre-transplant VAD infection may impact some early transplant outcomes, transplantation remains a viable option for patients with most types of VAD infection.

Summary

Standardized definitions of VAD infection applied to large registry datasets have yielded key insights into the epidemiology of infectious complications among VAD recipients, but more prospective studies are needed to evaluate the effectiveness of existing and novel diagnostic and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Kormos RL, Cowger J, Pagani FD, Teuteberg JJ, Goldstein DJ, Jacobs JP, et al. The Society of Thoracic Surgeons Intermacs database annual report: evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant. 2019;38(2):114–26. https://doi.org/10.1016/j.healun.2018.11.013This analysis of INTERMACS data provides the most up-to-date snapshot of mechanical circulatory support uitilization and associated adverse outcomes.

    Article  PubMed  Google Scholar 

  2. United Network for Organ Sharing. Adult heart allocation. 2018. https://optn.transplant.hrsa.gov/learn/professional-education/adult-heart-allocation. Accessed March 4 2020.

  3. Schaffer JM, Allen JG, Weiss ES, Arnaoutakis GJ, Patel ND, Russell SD, et al. Infectious complications after pulsatile-flow and continuous-flow left ventricular assist device implantation. J Heart Lung Transplant. 2011;30(2):164–74. https://doi.org/10.1016/j.healun.2010.08.003.

    Article  PubMed  Google Scholar 

  4. •• Hannan MM, Xie R, Cowger J, Schueler S, de By T, Dipchand AI, et al. Epidemiology of infection in mechanical circulatory support: a global analysis from the ISHLT mechanically assisted circulatory support registry. J Heart Lung Transplant. 2019;38(4):364–73. https://doi.org/10.1016/j.healun.2019.01.007This analysis of IMACS data provides the most robust description to date of the epidemiology of infections in patients with continuous flow VAD.

    Article  PubMed  Google Scholar 

  5. Agrawal S, Garg L, Shah M, Agarwal M, Patel B, Singh A, et al. Thirty-day readmissions after left ventricular assist device implantation in the United States: insights from the nationwide readmissions database. Circ Heart Fail. 2018;11(3):e004628. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004628.

    Article  PubMed  Google Scholar 

  6. Vidula H, Kutyifa V, Johnson BA, Strawderman RL, Harrington D, Polonsky B, et al. Readmission patterns during long-term follow-up after left ventricular assist device implantation. Am J Cardiol. 2018;122(6):1021–7. https://doi.org/10.1016/j.amjcard.2018.05.037.

    Article  PubMed  Google Scholar 

  7. Kato TS, Schulze PC, Yang J, Chan E, Shahzad K, Takayama H, et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2012;31(1):1–8. https://doi.org/10.1016/j.healun.2011.08.014.

    Article  PubMed  Google Scholar 

  8. Frontera JA, Starling R, Cho SM, Nowacki AS, Uchino K, Hussain MS, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant. 2017;36(6):673–83. https://doi.org/10.1016/j.healun.2016.12.010.

    Article  PubMed  Google Scholar 

  9. Varr BC, Restaino SW, Farr M, Scully B, Colombo PC, Naka Y, et al. Infectious complications after cardiac transplantation in patients bridged with mechanical circulatory support devices versus medical therapy. J Heart Lung Transplant. 2016;35(9):1116–23. https://doi.org/10.1016/j.healun.2016.04.016.

    Article  PubMed  Google Scholar 

  10. Quader MA, Wolfe LG, Kasirajan V. Heart transplantation outcomes in patients with continuous-flow left ventricular assist device-related complications. J Heart Lung Transplant. 2015;34(1):75–81. https://doi.org/10.1016/j.healun.2014.07.015.

    Article  PubMed  Google Scholar 

  11. Hannan MM, Husain S, Mattner F, Danziger-Isakov L, Drew RJ, Corey GR, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30(4):375–84. https://doi.org/10.1016/j.healun.2011.01.717.

    Article  PubMed  Google Scholar 

  12. •• Kusne S, Mooney M, Danziger-Isakov L, Kaan A, Lund LH, Lyster H, et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J Heart Lung Transplant. 2017;36(10):1137–53. https://doi.org/10.1016/j.healun.2017.06.007This document provides consensus recommendations from ISHLT for the prevention and management of VAD infections.

    Article  PubMed  Google Scholar 

  13. •• Koval CE, Stosor V, Practice AICo. Ventricular assist device-related infections and solid organ transplantation-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9):e13552. https://doi.org/10.1111/ctr.13552This is the most recent guideline document from the American Society of Transplantation for the diagnosis and management of VAD infections.

    Article  PubMed  Google Scholar 

  14. Sharma V, Deo SV, Stulak JM, Durham LA 3rd, Daly RC, Park SJ, et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94(5):1381–6. https://doi.org/10.1016/j.athoracsur.2012.05.074.

    Article  PubMed  Google Scholar 

  15. Goldstein DJ, Naftel D, Holman W, Bellumkonda L, Pamboukian SV, Pagani FD, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31(11):1151–7. https://doi.org/10.1016/j.healun.2012.05.004.

    Article  PubMed  Google Scholar 

  16. John R, Aaronson KD, Pae WE, Acker MA, Hathaway DR, Najarian KB, et al. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transplant. 2014;33(10):1066–73. https://doi.org/10.1016/j.healun.2014.05.010.

    Article  PubMed  Google Scholar 

  17. Koval CE, Thuita L, Moazami N, Blackstone E. Evolution and impact of drive-line infection in a large cohort of continuous-flow ventricular assist device recipients. J Heart Lung Transplant. 2014;33(11):1164–72. https://doi.org/10.1016/j.healun.2014.05.011.

    Article  PubMed  Google Scholar 

  18. Pavlovic NV, Randell T, Madeira T, Hsu S, Zinoviev R, Abshire M. Risk of left ventricular assist device driveline infection: a systematic literature review. Heart Lung. 2019;48(2):90–104. https://doi.org/10.1016/j.hrtlng.2018.11.002.

    Article  PubMed  Google Scholar 

  19. Dean D, Kallel F, Ewald GA, Tatooles A, Sheridan BC, Brewer RJ, et al. Reduction in driveline infection rates: results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. J Heart Lung Transplant. 2015;34(6):781–9. https://doi.org/10.1016/j.healun.2014.11.021.

    Article  PubMed  Google Scholar 

  20. Cagliostro B, Levin AP, Fried J, Stewart S, Parkis G, Mody KP, et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. J Heart Lung Transplant. 2016;35(1):108–14. https://doi.org/10.1016/j.healun.2015.06.010.

    Article  PubMed  Google Scholar 

  21. Stulak JM, Maltais S, Cowger J, Joyce LD, Daly RC, Park SJ, et al. Prevention of percutaneous driveline infection after left ventricular assist device implantation: prophylactic antibiotics are not necessary. ASAIO J. 2013;59(6):570–4. https://doi.org/10.1097/MAT.0b013e3182a9e2a5.

    Article  PubMed  Google Scholar 

  22. Cannon A, Elliott T, Ballew C, Cavey J, O'Shea G, Franzwa J, et al. Variability in infection control measures for the percutaneous lead among programs implanting long-term ventricular assist devices in the United States. Prog Transplant. 2012;22(4):351–9. https://doi.org/10.7182/pit2012612.

    Article  PubMed  Google Scholar 

  23. Gordon RJ, Weinberg AD, Pagani FD, Slaughter MS, Pappas PS, Naka Y, et al. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127(6):691–702. https://doi.org/10.1161/CIRCULATIONAHA.112.128132.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Blanco-Guzman MO, Wang X, Vader JM, Olsen MA, Dubberke ER. Epidemiology of left ventricular assist device infections: findings from a large non-registry cohort. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa011This is a large non-registry cohort analysis that describes more recent epidemiology of VAD infections at a single center.

  25. Nunez Breton JD, Hernandez G, Simkins J, Chaparro SV. Mycobacterium abscessus left ventricle assist device driveline infections: an emerging pathogen? Transpl Infect Dis. 2018;20(5):e12957. https://doi.org/10.1111/tid.12957.

    Article  PubMed  Google Scholar 

  26. Roest S, Bax HI, Verkaik NJ, Brugts JJ, Constantinescu AA, de Bakker CC, et al. Mycobacterium chelonae, an ‘atypical’ cause of an LVAD driveline infection. Int J Infect Dis. 2020;92:127–9. https://doi.org/10.1016/j.ijid.2020.01.002.

    Article  PubMed  Google Scholar 

  27. Phadke VK, Hirsh DS, Goswami ND. Patient report and review of rapidly growing mycobacterial infection after cardiac device implantation. Emerg Infect Dis. 2016;22(3):389–95. https://doi.org/10.3201/eid2203.150584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nienaber JJ, Kusne S, Riaz T, Walker RC, Baddour LM, Wright AJ, et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57(10):1438–48. https://doi.org/10.1093/cid/cit536.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pieri M, Muller M, Scandroglio AM, Pergantis P, Kretzschmar A, Kaufmann F, et al. Surgical treatment of mediastinitis with omentoplasty in ventricular assist device patients: report of referral center experience. ASAIO J. 2016;62(6):666–70. https://doi.org/10.1097/MAT.0000000000000418.

    Article  PubMed  Google Scholar 

  30. •• Aslam S, Xie R, Cowger J, Kirklin JK, Chu VH, Schueler S, et al. Bloodstream infections in mechanical circulatory support device recipients in the International Society of Heart and Lung Transplantation Mechanically Assisted Circulation Support Registry: epidemiology, risk factors, and mortality. J Heart Lung Transplant. 2018;37(8):1013–20. https://doi.org/10.1016/j.healun.2018.04.006This analysis of IMACS data describes the epidemiology of bloodstream infection in VAD over a time period that captures mostly newer generation continuous flow devices.

    Article  PubMed  Google Scholar 

  31. Kyvernitakis A, Pappas O, Farmakiotis D, Horn ET, Benza RL, Bailey SH, et al. Bloodstream infections in continuous flow left ventricular assist device recipients: diagnostic and clinical implications. ASAIO J. 2019;65(8):798–805. https://doi.org/10.1097/MAT.0000000000000881.

    Article  PubMed  Google Scholar 

  32. Shoham S, Shaffer R, Sweet L, Cooke R, Donegan N, Boyce S. Candidemia in patients with ventricular assist devices. Clin Infect Dis. 2007;44(2):e9–12. https://doi.org/10.1086/509640.

    Article  PubMed  Google Scholar 

  33. Aslam S, Hernandez M, Thornby J, Zeluff B, Darouiche RO. Risk factors and outcomes of fungal ventricular-assist device infections. Clin Infect Dis. 2010;50(5):664–71. https://doi.org/10.1086/650454.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reeves JS, Rajagopalan N, Huaman MA. Disseminated Streptococcus pneumoniae infection involving a ventricular assist device. Transpl Infect Dis. 2015;17(4):613–6. https://doi.org/10.1111/tid.12413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patel S, Rizvi SSA, Choi JH, Horan DP, Weber MP, Maynes EJ, et al. Management and outcomes of left ventricular assist device-associated endocarditis: a systematic review. Ann Cardiothorac Surg. 2019;8(6):600–9. https://doi.org/10.21037/acs.2019.04.04.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bongomin F, Otu A, Calisti G, Richardson MD, Barnard J, Venkateswaran R, et al. Trichosporon japonicum Fungemia and Ventricular Assist Device Infection in an Immunocompetent Patient. Open Forum Infect Dis. 2019;6(9):ofz343. https://doi.org/10.1093/ofid/ofz343.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bomholt T, Moser C, Sander K, Boesgaard S, Kober L, Olsen PS, et al. Driveline infections in patients supported with a HeartMate II: incidence, aetiology and outcome. Scand Cardiovasc J. 2011;45(5):273–8. https://doi.org/10.3109/14017431.2011.577236.

    Article  PubMed  Google Scholar 

  38. Bernhardt AM, Schloglhofer T, Lauenroth V, Mueller F, Mueller M, Schoede A, et al. Prevention and early treatment of driveline infections in ventricular assist device patients - the DESTINE staging proposal and the first standard of care protocol. J Crit Care. 2019;56:106–12. https://doi.org/10.1016/j.jcrc.2019.12.014.

    Article  PubMed  Google Scholar 

  39. Kim J, Feller ED, Chen W, Liang Y, Dilsizian V. FDG PET/CT for early detection and localization of left ventricular assist device infection: impact on patient management and outcome. JACC Cardiovasc Imaging. 2019;12(4):722–9. https://doi.org/10.1016/j.jcmg.2018.01.024.

    Article  CAS  PubMed  Google Scholar 

  40. Dell'Aquila AM, Avramovic N, Mastrobuoni S, Motekallemi A, Wisniewski K, Scherer M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for improving diagnosis of infection in patients on CF-LVAD: longing for more ‘insights’. Eur Heart J Cardiovasc Imaging. 2018;19(5):532–43. https://doi.org/10.1093/ehjci/jex158.

    Article  PubMed  Google Scholar 

  41. Dell'Aquila AM, Mastrobuoni S, Alles S, Wenning C, Henryk W, Schneider SR, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101(1):87–94; discussion. https://doi.org/10.1016/j.athoracsur.2015.06.066.

    Article  PubMed  Google Scholar 

  42. •• Tam MC, Patel VN, Weinberg RL, Hulten EA, Aaronson KD, Pagani FD, et al. Diagnostic accuracy of FDG PET/CT in suspected LVAD infections: a case series, systematic review, and meta-analysis. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.04.024A systematic review of the literature highlighting the promise of PET-CT as a high-yield diagnostic imaging modality for the evaluation of VAD infections.

  43. • Chen W, Sajadi MM, Dilsizian V. Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and CT angiography for the diagnosis of cardiac device infections. JACC Cardiovasc Imaging. 2018;11(11):1679–91. https://doi.org/10.1016/j.jcmg.2018.08.026This study demonstrates the benefits of PET-CT over traditional imaging modalities for the evaluation of VAD infections.

    Article  PubMed  Google Scholar 

  44. Simon D, Fischer S, Grossman A, Downer C, Hota B, Heroux A, et al. Left ventricular assist device-related infection: treatment and outcome. Clin Infect Dis. 2005;40(8):1108–15. https://doi.org/10.1086/428728.

    Article  PubMed  Google Scholar 

  45. Jennings DL, Chopra A, Chambers R, Morgan JA. Clinical outcomes associated with chronic antimicrobial suppression therapy in patients with continuous-flow left ventricular assist devices. Artif Organs. 2014;38(10):875–9. https://doi.org/10.1111/aor.12254.

    Article  CAS  PubMed  Google Scholar 

  46. Pieri M, Scandroglio AM, Muller M, Pergantis P, Kretzschmar A, Kaufmann F, et al. Surgical management of driveline infections in patients with left ventricular assist devices. J Card Surg. 2016;31(12):765–71. https://doi.org/10.1111/jocs.12860.

    Article  PubMed  Google Scholar 

  47. Balsam LB, Jacoby A, Louie E, Levine JP. Long-term success with driveline exit site relocation for deep driveline infection in left ventricular assist device patients. Innovations (Phila). 2017;12(6):440–5. https://doi.org/10.1097/IMI.0000000000000433.

    Article  Google Scholar 

  48. Levy DT, Guo Y, Simkins J, Puius YA, Muggia VA, Goldstein DJ, et al. Left ventricular assist device exchange for persistent infection: a case series and review of the literature. Transpl Infect Dis. 2014;16(3):453–60. https://doi.org/10.1111/tid.12207.

    Article  CAS  PubMed  Google Scholar 

  49. Chamogeorgakis T, Koval CE, Smedira NG, Starling RC, Gonzalez-Stawinski GV. Outcomes associated with surgical management of infections related to the HeartMate II left ventricular assist device: implications for destination therapy patients. J Heart Lung Transplant. 2012;31(8):904–6. https://doi.org/10.1016/j.healun.2012.05.006.

    Article  PubMed  Google Scholar 

  50. • Bauer TM, Choi JH, Luc JGY, Weber MP, Moncho Escriva E, Patel S, et al. Device exchange versus nonexchange modalities in left ventricular assist device-specific infections: a systematic review and meta-analysis. Artif Organs. 2019;43(5):448–57. https://doi.org/10.1111/aor.13378The most comprehensive systematic review to analyze outcomes after device exchange vs. non-exchange modalities for serious VAD infections.

    Article  PubMed  Google Scholar 

  51. Sperry BW, Fatemi O, Ruiz ME, Najjar SS. Late manifestation of a driveline infection after heart transplantation. J Heart Lung Transplant. 2014;33(3):324–5. https://doi.org/10.1016/j.healun.2013.12.018.

    Article  PubMed  Google Scholar 

  52. Schulman AR, Martens TP, Russo MJ, Christos PJ, Gordon RJ, Lowy FD, et al. Effect of left ventricular assist device infection on post-transplant outcomes. J Heart Lung Transplant. 2009;28(3):237–42. https://doi.org/10.1016/j.healun.2008.12.007.

    Article  PubMed  Google Scholar 

  53. Monkowski DH, Axelrod P, Fekete T, Hollander T, Furukawa S, Samuel R. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis. 2007;9(2):114–20. https://doi.org/10.1111/j.1399-3062.2006.00185.x.

    Article  CAS  PubMed  Google Scholar 

  54. Tong MZ, Smedira NG, Soltesz EG, Starling RC, Koval CE, Porepa L, et al. Outcomes of heart transplant after left ventricular assist device specific and related infection. Ann Thorac Surg. 2015;100(4):1292–7. https://doi.org/10.1016/j.athoracsur.2015.04.047.

    Article  PubMed  Google Scholar 

  55. Toda K, Yonemoto Y, Fujita T, Shimahara Y, Sato S, Nakatani T, et al. Risk analysis of bloodstream infection during long-term left ventricular assist device support. Ann Thorac Surg. 2012;94(5):1387–93. https://doi.org/10.1016/j.athoracsur.2012.03.021.

    Article  PubMed  Google Scholar 

  56. Lerman DT, Hamilton KW, Byrne D, Lee DF, Zeitler K, Claridge T, et al. The impact of infection among left ventricular assist device recipients on post-transplantation outcomes: a retrospective review. Transpl Infect Dis. 2018;20(6):e12995. https://doi.org/10.1111/tid.12995.

    Article  PubMed  Google Scholar 

  57. Healy AH, Baird BC, Drakos SG, Stehlik J, Selzman CH. Impact of ventricular assist device complications on posttransplant survival: an analysis of the United Network of Organ Sharing database. Ann Thorac Surg. 2013;95(3):870–5. https://doi.org/10.1016/j.athoracsur.2012.10.080.

    Article  PubMed  Google Scholar 

  58. Ahmad T, Wang T, O'Brien EC, Samsky MD, Pura JA, Lokhnygina Y, et al. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail. 2015;3(1):30–9. https://doi.org/10.1016/j.jchf.2014.06.013.

    Article  PubMed  Google Scholar 

  59. Grosman-Rimon L, Billia F, Fuks A, Jacobs I, M AM, Cherney DZ, et al. New therapy, new challenges: the effects of long-term continuous flow left ventricular assist device on inflammation. Int J Cardiol. 2016;215:424–30. https://doi.org/10.1016/j.ijcard.2016.04.133.

    Article  PubMed  Google Scholar 

  60. Holzhauser L, Kim G, Sayer G, Uriel N. The effect of left ventricular assist device therapy on cardiac biomarkers: implications for the identification of myocardial recovery. Curr Heart Fail Rep. 2018;15(4):250–9. https://doi.org/10.1007/s11897-018-0399-3.

    Article  CAS  PubMed  Google Scholar 

  61. Sherwin J, Thompson E, Hill KD, Watt K, Lodge AJ, Gonzalez D, et al. Clinical pharmacology considerations for children supported with ventricular assist devices. Cardiol Young. 2018;28(9):1082–90. https://doi.org/10.1017/S1047951118001075.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jennings DL, Makowski CT, Chambers RM, Lanfear DE. Dosing of vancomycin in patients with continuous-flow left ventricular assist devices: a clinical pharmacokinetic analysis. Int J Artif Organs. 2014;37(3):270–4. https://doi.org/10.5301/ijao.5000285.

    Article  CAS  PubMed  Google Scholar 

  63. Heil EL, Lowery AV, Thom KA, Nicolau DP. Treatment of multidrug-resistant pseudomonas aeruginosa using extended-infusion antimicrobial regimens. Pharmacotherapy. 2015;35(1):54–8. https://doi.org/10.1002/phar.1514.

    Article  CAS  PubMed  Google Scholar 

  64. Ruiz-Ramos J, Gimeno R, Perez F, Ramirez P, Villarreal E, Gordon M, et al. Pharmacokinetics of amikacin in critical care patients on extracorporeal device. ASAIO J. 2018;64(5):686–8. https://doi.org/10.1097/MAT.0000000000000689.

    Article  CAS  PubMed  Google Scholar 

  65. Bui KT, Mehta S, Khuu TH, Ross D, Carlson M, Leibowitz MR, et al. Extended spectrum beta-lactamase-producing Enterobacteriaceae infection in heart and lung transplant recipients and in mechanical circulatory support recipients. Transplantation. 2014;97(5):590–4. https://doi.org/10.1097/01.TP.0000436928.15650.59.

    Article  CAS  PubMed  Google Scholar 

  66. Donahey EE, Polly DM, Vega JD, Lyon M, Butler J, Nguyen D, et al. Multidrug-resistant organism infections in patients with left ventricular assist devices. Tex Heart Inst J. 2015;42(6):522–7. https://doi.org/10.14503/THIJ-14-4612.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Papathanasiou M, Pohl J, Janosi RA, Pizanis N, Kamler M, Rassaf T, et al. Colonization with multiresistant bacteria: impact on ventricular assist device patients. Ann Thorac Surg. 2018;105(2):557–63. https://doi.org/10.1016/j.athoracsur.2017.07.050.

    Article  PubMed  Google Scholar 

  68. Howard-Anderson J, Pouch SM, Sexton ME, Mehta AK, Smith AL, Lyon GM 3rd, et al. Left ventricular assist device infections and the potential role for dalbavancin: a case report. Open Forum Infect Dis. 2019;6(9):ofz235. https://doi.org/10.1093/ofid/ofz235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peghin M, Maiani M, Castaldo N, Givone F, Righi E, Lechiancole A, et al. Ceftolozane/tazobactam for the treatment of MDR Pseudomonas aeruginosa left ventricular assist device infection as a bridge to heart transplant. Infection. 2018;46(2):263–5. https://doi.org/10.1007/s15010-017-1086-0.

    Article  CAS  PubMed  Google Scholar 

  70. Levy DT, Steed ME, Rybak MJ, Guo Y, Gialanella P, Hanau L, et al. Successful treatment of a left ventricular assist device infection with daptomycin non-susceptible methicillin-resistant Staphylococcus aureus: case report and review of the literature. Transpl Infect Dis. 2012;14(5):E89–96. https://doi.org/10.1111/j.1399-3062.2012.00775.x.

    Article  CAS  PubMed  Google Scholar 

  71. • Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 2019;38(4):475–6. https://doi.org/10.1016/j.healun.2019.01.001This case report highlights a novel therapeutic option for patients with multidrug resistant bacterial infections associated with VAD.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Phadke was supported in part by Imagine, Innovate and Impact (I3) Funds from the Emory School of Medicine and through the Georgia CTSA NIH award (UL1-TR002378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun K. Phadke.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phadke, V.K., Pouch, S.M. Contemporary Management Strategies in VAD Infection. Curr Heart Fail Rep 17, 85–96 (2020). https://doi.org/10.1007/s11897-020-00459-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00459-x

Keywords

Navigation